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Abstract—As the demand for frequency resources increases
due to the current trends in technology such as IoT and smart
cities, efficient spectral usage becomes a prerequisite. To improve
spectral efficiency, many studies have proposed cognitive radio
(CR) as a solution. CR is mainly composed of two parts: spectrum
sensing, which allows continuous identification of spectrum holes,
and spectrum handoff, which ensures the cognitive user (CU)
vacates the channel when a primary user (PU) becomes active.
This study implemented a CR system with both spectrum sensing
and handoff capabilities using the ADALM Pluto Software-
Defined Radio (SDR) and GNU Radio. For spectrum sensing,
we used cooperative blind spectrum sensing (BSS) techniques,
specifically energy detector and the covariance-based detector.
For spectrum handoff, a probabilistic scheme was used and
compared with a traditional reactive scheme. The performance
of the implemented system was evaluated in both an open area
and a full anechoic chamber. It was observed that both energy
and covariance-based detectors were able to detect PU activity
accurately, but the latter was able to sustain its performance
at a lower signal-to-noise ratio (SNR). For spectrum handoff,
two setups were done: one in the open area utilizing Wi-Fi and
LTE bands, and another in the anechoic chamber to enable CU
transmission. Results also show that the probabilistic scheme
had better performance in handoff latency and throughput than
a reactive scheme.

Keywords—Spectrum sensing, Spectrum handoff, Cognitive
Radio, Cooperative sensing, SDR

I. INTRODUCTION

With the growth of wireless communication technologies,

the demand for frequency resources continues to increase.

While most radio frequency (RF) bands in the spectrum are

already allocated to primary users (PU), some are unoccupied

most of the time, leading to resource under-utilization [1].

Because of this, cognitive radio (CR) became a promis-

ing solution towards efficient spectrum usage by allowing

dynamic spectrum sharing between primary and cognitive

users (CU/SU) without needing new allocations [2]. Recently,

CRs are being applied in Radio Dynamic Innovation Zones,

shielded areas where active spectrum sharing is experimented

on [3], aiming to allow co-existence between different opera-

tors, wireless technologies, and legacy systems in the future.

The two main CR functionalities are spectrum sensing,

which allows continuous identification of spectrum holes,

and spectrum handoff, which ensures the CU vacates the

channel at instances of PU activity to avoid collision [2].

However, spectrum sensing is limited by distance, noise, and

obstructions that can cause missed detections, highlighting the

importance of cooperative sensing of multiple nodes [4]. And

given the limited implementation of Innovation Zones, small-

scale testing and practical implementation of theoretical CR

functionalities, especially sensing and handoff, are still needed.

Real-time and efficient spectrum sensing and handoff

schemes are essential to support fast and dynamic spectrum

sharing. However, most spectrum sensing techniques have high

computational costs while most handoff techniques focus on

theoretical optimization with complex methods over practical

evaluation. With multiple theoretical schemes proposed in the

previous years, this study assessed the performance of selected

schemes in actual frequency transmissions where non-ideal

conditions exist. Specifically, this project sought to:

• Accurately detect occupancy of desired frequency chan-

nels with a probability of detection (Pd) of at least 90%

and a probability of false alarm (Pfa) of at most 10%, as

prescribed in IEEE 802.22 WRAN.

• Implement practical single-user handoff with optimal

channel selection when PU returns to the current channel.

• Evaluate the performance of the hardware-implemented

system using key performance metrics.

II. RELATED WORKS

The algorithms presented offer a perspective on the ad-

vantages and disadvantages of different proposed algorithms

for each functionality. Since the hardware implementation is

limited by the devices used, it is crucial to choose to test it on

algorithms that balances both computational complexity and

efficiency. While some algorithms offer faster methods, it often

requires more costly devices with faster processing.
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A. Spectrum Sensing and Cooperative Spectrum Sensing

Spectrum sensing algorithms can be broadly classified into

two types: knowledge-aided spectrum sensing and blind spec-

trum sensing (BSS), which do not require knowledge of a PU,

making it applicable to different PU signals.

The energy detector approach is the most used BSS tech-

nique due to its simplicity and low computational costs. It

provides sufficient performance despite not needing an a priori

knowledge of the PU signal but suffers under low SNR

conditions and noise uncertainty [2], [5]. The cyclostationary

feature detection is more robust in low SNR conditions as it

exploits the cyclostationarity of PU signal features (i.e., mean

and autocorrelation) and the stationarity of noise. It requires

knowledge of the cyclostationary period of these features,

making it a semi-blind technique [6]. The covariance-based

approach is a fully blind sensing approach where a covariance

matrix is constructed from the signal samples, and then the

ratio of the max and min eigenvalues is calculated [7]. This

is more computationally expensive, but still less complex than

machine learning-based techniques. This method is similar to

the cyclostationary feature detector in that it assumes that the

PU signals are correlated while noise is uncorrelated [2].

In some cases, spectrum sensing using a single node can

already provide accurate detection; however, it is vulnerable to

shadowing and fading. Cooperative spectrum sensing (CSS) is

a solution that has been employed by many studies to mitigate

this issue by introducing spatial diversity and redundancy [7],

[9]. The gathered samples go through multiple stages during

spectrum sensing. Each stage provides an opportunity for

fusion, and generally, a fusion center closer to the SDR source

provides a better performance improvement at a cost of higher

computational complexity [8].

B. Spectrum Handoff

Traditionally, spectrum handoff schemes are categorized as

either reactive or proactive. Reactive handoff does channel

searching only when a PU is detected and without any prior

information on occupancy of channels, while proactive handoff

chooses another channel already before a trigger event [10]

which can help decrease collision rate for large numbers of

PUs [11]. Common proactive schemes rely on prediction of

PU activity based on factors such as CU waiting period or

handoff probability but most of them only estimate it through

statistical models and assumptions [11].

Some studies explored the integration of proactive with

reactive methods in order to account for the dynamic nature

of users. PU traffic categorization is done by [12], [14], [15]

based on factors such as PU intensity, periodicity and CU

service time, and switches to the appropriate handoff scheme

for each category. On the other hand, [13] uses the idea of idle

probabilities to choose a channel and handing off only during

a trigger event. And even with multiple schemes proposed,

only a few have attempted to assess its hardware limitations

such as [16] which explored the performance of using two

processors to hold channel information for handoff.

Fig. 1: System Overview

III. SYSTEM IMPLEMENTATION

The overview of the implemented system is given by Fig.

1. The setup utilized multiple channels of chosen frequency

bands. Each channel is monitored using multiple Software-

Defined Radios (SDR), radios that can be programmed using

a software such as the GNU Radio Companion, which allows

for real-time processing of received signals. These SDRs were

connected to separate GNU Radio workspaces, each with local

sensing data that are sent to a fusion center. The fusion center

combines the information gathered by each SDR on the same

channel and outputs a global decision on channel occupancy.

This combined information is then used to trigger handoff,

if needed, and as a basis for calculating each channel’s idle

probability. The same fusion center is also used to control CU

transmission parameters based on information it has received.

Moreover, the study was divided into three parts: (1) algo-

rithm testing of chosen schemes, (2) hardware implementation,

and (3) evaluation of performance indicators.

A. Algorithm Design and Implementation

1) Spectrum Sensing: In the covariance-based detector, the

approximate sample covariance matrix Ry of the received

signal y(m) is estimated using the sample autocorrelation

coefficients from zero to the smoothing factor L as shown

by Eq. (1), where α(l) is the lth autocorrelation coefficient

that is given by Eq. (2) and Ns is the number of samples

from the signal.

R̂y(Ns) =




α(0) α(1) . . . α(L− 1)
α(1) α(0) . . . α(L− 2)

...
...

...

α(L− 1) α(L− 2) . . . α(0)


 (1)

α(l) =
1

Ns

Ns−1∑

m=0

y(m)y(m− l), l = 1, 2, 3, ..., L− 1 (2)

The eigenvalues of the covariance matrix is then calculated,

and the ratio of its maximum and minimum is compared

against the threshold γc to determine the spectrum activity

[7]. This can be expressed as:

PU =

{
present, TMME = λmax

λmin

≥ γc

absent, TMME = λmax

λmin

< γc
(3)

The energy detector measures the power level within the

target frequency band and subsequently compares it against a

predefined threshold. Its main idea is that in the presence of

a PU, the signal power is considerably higher than when the

PUs are absent.



Fig. 2: Dynamic Spectrum Access

TED =
1

Ns

Ns−1∑

m=0

|y(m)|2 (4)

PU =

{
present, TED ≥ γED

absent, TED < γED

(5)

Test statistic fusion was used for CSS as it serves as the

middle ground between performance and simplicity. In the

case of covariance-based detection, this was done by simply

taking the average of the different calculated test statistics from

each node. In doing so, the global test statistic was more robust

to shadowing and fading present in the minority of the sensing

nodes.

2) Spectrum Handoff: The probabilistic handoff scheme

derived from the work of [13] was implemented as it offers less

complexity and computational costs compared to the others. It

chooses a channel based on its probability to be idle and only

administers handoff when activity is detected. A channel’s idle

probability is calculated using Eq. (6):

Pidle,x =
Nidle,x

Nx

(6)

where Nx is the number of times the channel has been

sensed and Nidle,x is the number of unoccupied detections.

At initialization, each channel is sensed N times to create

an initial probability matrix where an initial channel will be

chosen after. If deemed unoccupied, the CU will begin its

transmission at that channel and continuously monitor it. Once

another activity is detected, it selects from the matrix for the

next channel with the highest probability and transmits on

it if unoccupied and so on. Every time a channel is sensed,

the matrix is updated. The detailed flowgraph of the handoff

scheme for dynamic spectrum access is shown by Fig. 2.

B. Hardware Setup

The sensing nodes, transmitters, and receivers all used

ADALM-Pluto SDRs developed by Analog Devices Inc.,

capable of both transmitting and receiving frequencies ranging

from 325 MHz to 3.8 GHz. All data and signal processing is

done through the GNU Radio Software. A central machine

Fig. 3: Hardware Overview

served as the fusion center of the system which, not only was

used to combine data from each node but also to dynamically

adjust CU transmission frequency. Information on spectrum

activity was monitored in this central machine and then used

by the handoff mechanism to make its decisions. Fig. 3 shows

an overview of the hardware setup.

For the first part of the hardware implementation, two

frequency bands transmitting orthogonal frequency-division

multiplexed (OFDM) signals were utilized: the 2.4GHz Wi-

Fi band and the 700MHz LTE band. For this setup, only

an emulated CU is done, where CU transmission was only

virtual, since interference with actual licensed transmissions

by unlicensed ones must be avoided. This setup was done

to assess the performance of the system on existing on-air

transmissions with known rampant activity where handoffs are

most likely to happen.

For the second half of the implementation, the system was

implemented in a full anechoic chamber as shown by Fig.

4, which protects outside RF signals from interference and

vice versa. This allowed for over-the-air transmission of the

CU and assessment of transmission quality where the effect

of sensing delays and real-time collisions on the CU can

be examined. SDRs are connected via a USB hub to the

central machine. Each is randomly placed but sufficiently

spaced across the room with non-uniform distances from the

transmitter to simulate a dynamic CU environment where some

CU are obstructed while some are not. Since no other signals

can be detected inside, controlled PUs were also simulated

using SDRs, each with varying patterns of idleness, to simulate

dynamic PU activity on different channels. This was done to

force the system to initiate handoff at certain points in time

and imitate a real-world RF environment.

Only singular CU activity is simulated for the study as

multiple CU would require additional complexity in terms

of priority for CUs sharing a channel as well as a separate

processing machine for each CU. The number of sensing nodes

was also limited to three to avoid overloading and further

degrading the processing time of the central machine.

C. Evaluation of Key Metrics

1) Receiver Operating Characteristics (ROC) curves: The

performance of the spectrum sensing was assessed using ROC

curves with OFDM signals which shows the probability of

detection (Pd) against the probability of false alarm (Pfa). A

bigger area under the curve means better performance as it is

desirable to have higher Pd at smaller Pfa. This was used to



Fig. 4: Anechoic Chamber Setup
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Fig. 5: ROC curves for varying CSS nodes count @ 17.2dB

asses the performance of the detection algorithms as well as

the effect of increasing sensing nodes. In order to construct an

ROC curve, we must have full control over the PU activities.

To do so, our system was implemented in a full anechoic

chamber to avoid colliding with telecom companies.

2) Average Handoff Latency: The performance of the hand-

off algorithm was evaluated through its average handoff la-

tency, the total time it takes to administer handoff successfully

once interference is detected.

3) Throughput: To assess the overall system, sample files

were transmitted through OFDM by the CU and its throughput

or the rate of data transferred were measured, which was

mainly affected by both handoff delays and collisions with

other users from missed detections.

As a benchmark for comparison, a purely reactive scheme

was also implemented where channels are searched on-demand

since it usually performs well in ideal scenarios as it has the

least computational cost.

IV. RESULTS AND DISCUSSION

A. Receiver Operating Characteristics (ROC) curves

Fig. 5 shows that the performance of both the energy

detector and the covariance-based detector for all numbers of

nodes meet our specifications for accuracy – if the Pfa is set

to 10%, the corresponding Pd exceeds 90%. The set of curves

on the left uses energy detection and as we can see, it is a step

function, which signifies perfect accuracy. The addition of CSS

cannot improve the already perfect accuracy. The set of curves

in the right uses the covariance-based detector. Its ROC curves,

even though not perfect, still satisfy our specification. It is

visually evident that its performance increases as the number

of nodes also increases; the exact values for areas are 0.9865

(3 nodes), 0.9761 (2 nodes), and 0.9698 (1 node).
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Fig. 6: Test Statistic Distribution for Energy-based CSS
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Fig. 7: Probability of detection and false alarm at varying SNR

In the anechoic chamber, there is minimal noise and leak-

ages from any nearby PU activity. As a result, the sampled

signal has a high SNR, which explains the perfect performance

of the energy detector. Fig. 6 shows the probability distribution

of the energy, which is the test statistic, of the received signal

in the presence and absence of a PU at 17.2 dB. We can see

that the two distributions have no intersection due to the large

energy gap between the signals. Decreasing the SNR will bring

these two distributions closer and intersect with each other,

which results in the uncertainty of the presence of a PU. In

the case of Fig. 6, if the threshold γED is set to be between

0W and 10mW, using Eq. (5) we can see that the performance

will be perfect.

Since we had no control over the SNR in the implementation

of the system in the anechoic chamber, we used GNU Radio

to simulate various SNR conditions and evaluate our spectrum

sensing scheme’s performance. Fig. 7 shows the probability

of false alarm and detection at various SNRs. Both techniques

suffer from low SNR conditions. The energy detector always

detects that a PU signal is present regardless of the actual pres-

ence of the PU. On the contrary, the covariance-based detector

detects that a PU signal is absent most of the time, regardless

of the actual presence of the PU. The energy detector had

a good performance until 3.44dB, while the covariance-based

detector was until 1.44dB. By this comparison, the covariance-

based detector can operate at a lower SNR than the energy

detector while still meeting our accuracy specification. The

weaker performance of the covariance-based detector might be

due to the insufficient observation time. The short sampling

window must have made the PU signal appear uncorrelated,

making the max eigenvalue λmax smaller, similar to when a

PU is absent.



B. Wi-Fi and LTE Band with Emulated CU

Two handoff mechanisms were implemented for each band:

probabilistic and purely reactive. Each was run for 30 minutes.

Since no prior information about channel activities is used,

there is no way of knowing if detected are actual licensed

users. It is assumed that channel activities, licensed or unli-

censed, sensed by the CU are considered as PU activity.

1) 2.4GHz Band: Five non-overlapping channels, each with

25MHz bandwidth, were utilized for the Wi-Fi band with

center frequencies from 2.412GHz to 2.512GHz. Since the Wi-

Fi band has intentional overlapping channels, spectral leakages

are considered as PU activity. The average normalized power

recorded for channels is shown in Table I, which provides

insight into the idle probabilities of the channels. The resulting

channel distribution is given by Fig. 8, while the handoff key

metrics are given by Table II.

The channel distribution clearly shows that for the proba-

bilistic handoff, the CU only switches between two channels,

2.462 GHz and 2.487 GHz, and this is apparent in the average

powers recorded, with the fourth channel having the lowest.

For the reactive handoff, the distribution is spread out in

different channels. Since the 2.484GHz channel is restricted

in the country and is located at the edge of the Wi-Fi band,

the fourth channel is expected to have the least activity or

leakages detected. In terms of the handoff key metrics, the

results show that the latency for a reactive scheme is worse

than the probabilistic one with a greater number of handoffs.

Since the reactive scheme chooses a random channel, it is

likely that it will take time to find an unoccupied channel

and it increases handoffs when it selects channels that are not

fully occupied. This means that for the probabilistic handoff,

the CU is likely to stay in a channel for a longer period.

2) 700MHz Band: Eight channels each with 10MHz band-

width was utilized for the LTE band with center frequencies

ranging from 713MHz to 783MHz. Similarly, the average

energies recorded for each channel is shown at Table III while

the channel distribution and handoff metrics is given by Fig.

9 and Table IV respectively.

Similar to the Wi-Fi band, the channel distribution also only

switches between a few channels and the handoff latency is

also less when using a probabilistic handoff in the LTE band.

Although the number of handoffs for the reactive scheme

is less, opposite to the Wi-Fi band, the delay difference is

much larger in it since there are more channels to search,

which also affects the time of actual transmission within the

given period. For a frequency band with more channels, the

reactive scheme performs much worse due to increased delays

in channel searching, especially if most channels are occupied.

TABLE I: Average Normalized Power for Wi-Fi Channels

Freq. (GHz) 2.412 2.437 2.462 2.487 2.512

Power (e-6 mW/mW) 9.2784 217.93 10.618 0.0728 242.91

TABLE II: Spectrum Handoff Key Metrics for Wi-Fi Band

Handoff Scheme Ave. Handoff Latency Total No. of Handoffs

Reactive 1.87835 s 266

Probabilistic 1.09436 s 180

While both schemes have a high number of handoffs for the

time of measurement, it is worth noting that both bands have

bursty transmissions, as observed during simulation. That is,

the activity in the channel occurs in very short intervals and it

is possible that the sensing intervals were able to sense parts

in-between bursts.

C. Over-the-air CU Transmission

For the setup in the anechoic chamber, four channels were

used, each with a simulated PU with different periodicity.

Sample files were transferred by the CU in order to assess

the effect of handoff delays and missed detection in actual

data throughput. Two transmission setups were done each with

different file sizes and runtime: (1) a five-minute transmission

of 9-byte files and (2) a 10-minute transmission of 68-byte

files. The handoff key metrics for both transmission is shown

at Table V and Table VI respectively while the data throughput

is illustrated by Fig. 10.

The handoff metric remains consistent with the observed

performance from the Wi-Fi and LTE bands, wherein the

probabilistic schemes have less latencies. By using controlled

PUs, the number of handoffs is smaller for the given time

since transmission is not in bursts but the results show both

schemes having a close number of handoffs, mainly because

of fewer channels used. However, the contrast is much more

apparent with the data throughput as the probabilistic scheme

has a visibly larger throughput, more than twice the reactive

scheme for both setups, which is a large improvement. While

both schemes were not able to fully avoid collisions, as seen

from the packet losses due to the receiver unable to decode the

data, the reactive scheme still perform much worse. Although

the throughput seemed to decrease for larger packet sizes,

this is likely caused by the small transmission intervals of

the CU for the setup, since sensing and transmission work

alternately. To achieve higher throughput for larger packets,

transmission intervals can be increased but at the cost of

interference detection delays, which can cause more collisions.

V. CONCLUSION

The implementation of the system both in an open area

and in the anechoic chamber was able to detect PU activity

accurately and relocate its transmission during interference.

The two employed blind spectrum sensing schemes met our

specifications for accuracy, with the covariance-based detector

able to operate at a lower SNR. Although not fully avoided,

the system was also able to minimize collision with the PU

TABLE III: Average Normalized Power for each LTE Channel

Freq. (MHz) 713 723 733 743

Power (e-3 mW/mW) 9.937082 0.032758 0.007120 0.007929

Freq. (MHz) 753 763 773 783

Power (e-3 mW/mW) 0.022569 0.282115 0.316478 0.109068

TABLE IV: Spectrum Handoff Key Metrics for LTE Band

Handoff Scheme Ave. Handoff Latency Total No. of Handoffs

Purely Reactive 4.039737 s 219

Probabilistic 1.42462 s 336



Fig. 8: Channel Distribution in

Wi-Fi Band

Fig. 9: Channel Distribution in

LTE Band

Fig. 10: Data Throughput of

CU Transmission

by successfully switching to a vacant channel. Despite the

varying results on the number of handoffs, we saw a decrease

in the average handoff latency in both cases when using the

probabilistic handoff scheme. We also saw a higher throughput

in using a probabilistic handoff scheme, with the overall

throughput of the transmission of a larger packet size being

lower due to insufficient transmission intervals.

Future works may consider utilizing a spectrum sensing

scheme that has a good performance at low SNR conditions.

More computationally expensive algorithms such as cyclosta-

tionary detection or even machine learning based detection

can be adopted to provide performance improvements, albeit

requiring better hardware. Knowledge-aided sensing, such as

matched filter detection, could also provide performance im-

provements, especially at low SNR. The transmission interval

could also be adjusted to accommodate transmission of bigger

packet sizes in exchange for a delay in the detection of

interferences. For future implementations, other schemes can

be explored, as well as higher-end SDRs, which can offer

better performance in hardware implementations. And since

CR systems are meant for a larger scope, multiple CU can be

assessed in future iterations, and how the addition of more CU

could impact system performance.
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TABLE V: Handoff Key Metrics for 9-byte transmission

Handoff Scheme Ave. Handoff Latency Total No. of Handoffs

Purely Reactive 8.451708 s 12

Probabilistic 1.294035 s 13

TABLE VI: Handoff Key Metrics for 68-byte transmission

Handoff Scheme Ave. Handoff Latency Total No. of Handoffs

Purely Reactive 3.58236 s 47

Probabilistic 1.410709 s 42
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