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Abstract—Most commercial wearable health devices are un-
able to measure both heart and respiratory rate simultaneously
as they rely on photoplethysmography (PPG). Audio-based
approach is a promising development in wearable devices as
they can detect and measure both heart and respiratory rate
simultaneously. In this study, a platform using an nRF52840
MCU and MAX4466 electret microphone is used to record
physiological signals. These signals are sent to a mobile device
where a bandpass filter isolates the target frequency of physio-
logical signals. The signal undergoes wavelet thresholding and
decomposition using the db6 wavelet, which shows a similar
structure to the S1 and S2 signals in heart sounds, to further
isolate and denoise the targeted frequencies. A Hilbert transform
is applied to get the envelope of the system, which will then
pass through a customized peak detection algorithm. The overall
device was tested against a pulse oximeter (PPG), a smart watch
(EKG), and a KardiaMobile® EKG Monitor. Results show the
device achieved the best heart rate accuracy at FS1 (upper
right intercostal space auscultation point) and FS4 (bottom
left intercostal space, apex of the heart), with MAE scores
of 5.23+1.79 BPM and 5.18+6.58 BPM, respectively. Further
validation at FS1 yielded an MAE of 4.584+2.54 BPM on an
individual with normal BMI, reinforcing FS1 as the optimal
auscultation point for HR monitoring. The most accurate RR
measurement was at BS1 with an MAE of 1.98+1.21 BPM.
Power profiling estimates a battery life of 68.979 hours. Aus-
cultawear demonstrates potential as a reliable, low-cost wearable
for real-time monitoring of HR and RR. However, these findings
are preliminary, and additional refinements and large-scale
validation across diverse demographic groups are necessary to
establish the system’s robustness and generalizability.

I. INTRODUCTION

Health is a key indicator of a person’s ability to perform
daily tasks [1]. Vital signs like heart rate (HR) and respi-
ratory rate (RR) help detect early signs of health decline,
especially for medical professionals, chronic patients, and
fitness enthusiasts. Globally, the WHO cites cardiovascular
diseases, respiratory illnesses, and neonatal conditions as
leading causes of death [2]. In the Philippines, heart and
respiratory diseases are top causes of mortality [3], [4].

Conventional methods like ECG, plethysmography, and
imaging (e.g., MRI, ultrasound) are accurate but costly and
clinic-bound [5], [6]. Photoplethysmography (PPG), common
in wearables, offers portability but suffers from limitations
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due to motion, skin tone, tattoos, and ambient light [7],
[8]. Pulse oximeters using PPG can be uncomfortable for
prolonged use. Ultrasonic techniques, while effective, are
unsuitable for long-term monitoring due to tissue risks [9].

This study investigates wearable acoustic auscultation,
which leverages body-generated sounds traditionally captured
via stethoscope [10], [11]. Monasterial et al. showed audio-
based HR and RR monitoring using digital signal processing
on smartphone recordings [12]. While effective, their work
remained offline and algorithm-focused. This study extends
it by creating a wearable system with real-time signal ac-
quisition, processing, and BLE-based mobile visualization.
Audio-based wearables avoid the drawbacks of light-based
systems and provide a direct, non-invasive way to track vital
signs.

II. METHODOLOGY

A. System Overview
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Fig. 1: System Overview Comprising of Auscultawear and
Mobile Devices

The system is composed of three main components: the
signal acquisition, signal presentation, and signal processing.
The signal acquisition is done within the Auscultawear wear-
able device. Signal presentation is done with the use of a
mobile device, which communicates with the Auscultawear
wearable device via BLE. Underneath the mobile device is
a mobile application designed to handle signal processing,
which processes the received data to extract features and
returns it back to the mobile application for display. The wear-
able device is designed for daily use, and with smartphones



being an everyday item, a mobile application is developed to
connect to the wearable device for monitoring their health.
Smartphones typically have a much greater processing power
than the development board, and by running the processing
algorithm in the mobile device, it should not only process the
data faster, but also reduce the power consumption within the
wearable device, extending its operation time for long-term
use. The overview of how the device works is shown in Fig.
1.

B. Device Prototype
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Fig. 2: Framework of Device Prototype

1) Hardware Architecture: This study used the Seeed
Studio XTAO nRF52840 Sense development board, featuring
a Nordic nRF52840 MCU and powered by a 3.7V 500mAh
Li-Po battery. An electret microphone with a range of 20Hz
to 20kHz with a MAX4466 amplifier provided directional
sound capture via a diaphragm connector. The onboard
LSM6DS3TR-C IMU enabled synchronized motion tracking.
A micro-SD module ensured backup data logging in case of
BLE communication loss. A summary of the framework is
shown in Fig. 2 and the device prototype is shown in Fig. 4.
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Fig. 3: Labeled Device Prototype

2) Code Architecture: The code architecture of how it
communicates with the mobile device. The device begins
with initialization, then starts advertising via BLE under the
name Auscultawear. Upon connection, it enters Manual mode
by default, awaiting commands from the mobile app. When
instructed to record, it captures a 20-second audio sample,
stores it in local RAM and the micro-SD card, then transmits
it via BLE. In Auto mode, the device records and sends

20-second segments continuously until a stop command is
issued through the app. The 20-second duration was selected
as it provides a practical balance for the signal processing
algorithm: it is long enough to reliably detect valid respiratory
cycles, yet short enough to maintain accuracy in the rolling
average computation for heart rate without distortion.
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Fig. 4: Mobile Application (History Page and its subpages
to view WAV files)

3) Mobile Application: The mobile application was de-
signed using Flutter Development Kit. For the purpose of
this study, the mobile application was mainly developed for
Android, however given Flutter’s multi-platform feature, it
should be possible to easily replicate the current mobile
application on other platforms like i0OS, Windows, or Mac.
There are two (2) main parts in the code, which is a recording
page and a history page. In the recording page, the mobile
application is able to connect to the MCU via the Flut-
terBluePlus package. The mobile application only connects
to devices with a unique service UUID. Upon connecting
to a device, it will immediately open up the device screen,
which will show the beats per Minute of the heart rate and
respiratory rate. This shows the current BPM over the 20-
second audio data the MCU has recorded and transmitted via
BLE. The processing is mainly done in termux, a terminal
emulator, and it runs a python-based digital signal processing
algorithm which will be discussed later on, the termux acts as
a remote server for the python program to run and it directly
communicates with the Flutter application using Flask-HTTP
method, additionally in the python program, the audio data
are also saved as a wave file, while the IMU data as a text
file, both using consistent time-based filename convention for
easier association. Upon receiving the processed data, the
Flutter application updates the graphs and displays the BPM.
Afterwards, there would be an attempt to transmit and save
the data into a cloud database in the UP CARE platform and
a local SQL database within the application. The history page
is capable of loading the data recorded in the recording page,
selecting a date will show the heart and respiratory rates in
BPM for the selected date, and the 20-second recordings may
also be viewed by opening the wave file of the audio data and
the text file of the IMU data. A screenshot of the developed
application is shown in Fig. 4.

4) Signal Processing: A summary of the data processing
for the recorded auscultation sound is shown in Fig. 5. The
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Fig. 5: Flowchart of the data processing for the recorded sound.

audio recorded from the device is converted into an array
using the read method of the soundfile library. This sound
is then passed through bandpass filters in the ranges 10-200
Hz for heart sound, and 100-950 Hz for respiratory sound
using SciPy’s butter and filtfilt methods. These signals are
then passed through wavelet decomposition using the db6
wavelet—wavelet being used as it has a high time resolution
and low-frequency resolution for high frequencies, low time
resolution, and high-frequency resolution for low frequencies
[13]; with heart sound at level 5 and respiratory sound at
level 7. Both of these signals are passed through wavelet
thresholding using the same wavelet to remove any small
noises in their respective frequency signal. These signals
are then passed through a Hilbert transform to obtain their
envelope. Finally, the processed heart and respiratory sounds
are passed through their respective peak detection algorithms.

a) Heart Sound Peak Detection: Every signal of the
envelope is compared to a rolling mean window of 0.5
seconds. Only signals that are within 2 to 10 times the rolling
mean will proceed with the analysis. The first 2 peaks will
be automatically accepted to serve as the baseline of the
rejection algorithm. The succeeding peaks will then undergo
a Z-core test. If the peak occurred sooner than expected,
which is represented by a Z-score greater than 3, then the
peak is rejected. Otherwise, it would be accepted and any
signals within a distance of 0.1 seconds would be ignored. All
accepted peaks would be placed into two groups which would
serve as the S1 and S2 groupings. The distance between
the peaks of both groups would be calculated to obtain the
average heart rate as shown in equation 2, where tg; ,, is the
time of the n-th peak of the i-th group. The average of both
groups, BPMg; and BPMgs, would serve as the overall
heart rate as shown in equation 1.
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b) Respiratory Sound Peak Detection: The signal en-
velope of the respiratory sound is further processed by
integrating the envelope over a window of 0.5 seconds. The
window starts at 0 or the previous 0.5 seconds before the
signal. This is done to ensure that long, prominent breathing
sounds are prioritized over quick, transient heart beats. The
local maxima are obtained using SciPy’s find_peaks method.
If the signal between two peaks crosses below the mean of the
integral of the 20 second signal, then the signal is accepted.
Finally, if the number of peaks is more than four, then the

same groupings from the heart sound peak detection is used
as shown in equation 1 and 2. This approach, similar to the
heart sound peak detection, ensures that a respiratory rate
can be obtained even if only a few respiratory sounds were
detected.

C. Performance Evaluation

1) Data Aggregation: To validate the device’s accu-
racy, recordings were made alongside a medical-grade pulse
oximeter and the ECG feature of a Samsung Galaxy Watch
6 for heart rate comparison. Respiratory rate was manually
counted for each trial. Tests were conducted at six body sites
(Fig. 6), with an additional walking test at FS2 to assess
motion performance. For improved signal quality, participants
wore the device directly on the skin [14].
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Fig. 6: Auscultation Points in the Study (on the left is the
posterior side and on the right is the anterior side)

2) Device Data Quality: Ten recordings were collected per
sector—half during regular breathing and half with slightly
heavier breathing. For each trial, the absolute error was
calculated against corresponding values from a pulse oximeter
and ECG. The Mean Absolute Error (MAE), computed using
equation 3, provided a quantitative measure of device perfor-
mance, where y; represents the reference value (ECG, pulse
oximeter, or KardiaMobile®) and x; is the Auscultawear
output for the i-th trial over n trials.

MAE — Zi:l ‘Z/z - xz\ 3)
n

Building on these results, the sector with the best MAE
was selected for further testing using KardiaMobile®This
step served to benchmark Auscultawear’s heart rate accuracy
against a recognized gold standard.

3) Power Requirements: The power consumption of Aus-
cultawear was evaluated using Nordic’s Power Profiling Kit
2, which measured current draw during a single operation
cycle for each mode. Battery life was then estimated using
the measured power P, battery voltage Viay, capacity Qpay,
and regulator efficiency 7, as shown in:

Vi
P Usz; batt )



III. RESULTS AND DISCUSSION

As described in the methodology, 10 samples were col-
lected per auscultation sector. The primary participant was a
23-year-old male, weighing 70 kg and measuring 1.65 m in
height. Two additional participants were involved in device
benchmarking: one weighing 84.2 kg and 1.64 m tall, and
another weighing 81.15 kg and 1.69 m tall.

A. Data Collection and Display

The mobile application displays the collected data for each
recorded session. The processing algorithms used to generate
the graphs shown in Fig. 8 and 7 were executed on a laptop.
Additionally, Table I presents the average processing time
over ten trials for three different devices, each running the
same audio samples. The specifications for the test devices
are as follows: Laptop (Intel(R) Core(TM) i5-10300H CPU
@ 2.50GHz), Phone 1 (Exynos 9611, Octa-core 4x2.3GHz
Cortex), and Phone 2 (Exynos 1380, Octa-core 4x2.4GHz
Cortex). Despite differences in runtime, all devices produced
identical outputs, confirming the platform-independence of
the signal processing pipeline.

Despite being a mid-range Android device, Phone 1
demonstrated an average processing time significantly shorter
than the 20-second sampling interval of the Auscultawear
device. This confirms that even low-to-mid tier mobile phones
are capable of real-time data processing without falling
behind. Offloading computation from the wearable to the
smartphone not only ensures faster execution but also reduces
the power consumption of the wearable, extending its battery
life and enabling more efficient continuous monitoring.

TABLE I: Average Processing Time per 20-second Audio
Sample
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Fig. 8: Example of a good performance of the device

As described in the methodology, MAE values across
sectors were compiled into a table for quantitative analysis. To
visually assess performance, time-synchronized ECG signals
were overlaid on post-processed audio with annotated peaks.
Fig. 7 shows a case with poor alignment—ECG recorded 100
BPM, while the device computed 121.23 BPM, likely due to
missed and false peaks. In contrast, Fig. 8 illustrates a well-
aligned case, with ECG at 92 BPM and the device at 91.28
BPM. Most ECG peaks aligned with the S1 heart sounds,
with a slight error due to one missed peak around the 16-
second mark.
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B. Device Data Quality

To consider a heart rate measurement to be valid while
a person is at rest, the MAE must be no greater than 5.21
BPM. In contrast, during walking activity, the MAE threshold
increases and the values must remain at or below 9.33 BPM
to be deemed acceptable. However for the respiratory rate,
the measurements are considered acceptable when the mean
absolute error is less than 5.20 breaths per minute [15].
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Fig. 7: Example of a bad performance of the device

Fig. 9: Mean average error of Auscultawear. The frequency

range of the heart sound of FS1, FS3, and WFS2 are from

10-200 Hz, while the heart sound of the other sectors are
from 50-200 Hz.

Fig. 9 shows the mean average error of Auscultawear when
compared to a pulse oximeter, ECG from a smart watch, and
manual respiratory rate counting. The MAE highlighted in
green is during light breathing, while the one in orange is
during heavy breathing. The performance of Auscultawear on
heart rate barely passed the threshold of 5.21 BPM at sector
FS4 against ECG, but its performance on respiratory rate is
acceptable being well under the 9.33 BPM threshold on all
sectors. It is important to note that the heart rate performance
of the device on sector FS4 is the most accurate, especially
during light breathing, but sector FSI is the most precise
while still being accurate.

The heart rate MAE of sectors FS2, FS4, BS1, and BS2
were considerably worse when compared to the heart rate
MAE of sectors FS1 and FS3 when using 10-200 Hz, but
improves when the frequency range is 50-200 Hz. Notably,
sectors FS1 and FS3 are the same sectors where the heart
is closer and the heartbeats are more audible. This is why



including the sub-50 Hz frequency on its range improves the
heart rate MAE. Meanwhile, the other sectors benefit from
clipping the sub-50 Hz frequency as these sectors are mostly
noise since the heart beats are barely audible.

In general, FS1 and FS4 are the best for monitoring heart
rate, while BS2 is optimal for measuring respiratory rate.

It was also found that the bandpass frequency for heart rate
affects the performance according to the sector. When chang-
ing the bandpass frequency from 10-200 Hz to 50-200Hz,
sectors FS1, FS3, BS1, and BS2 increased its accuracy by
57%, 8%, 43%, and 71% respectively. Only sectors FS2 and
FS4 were degraded, with a decrease of 99% and 88% in
accuracy respectively. It can be seen that FS2 and FS4 are
located where the bass of the heartbeats is heard prominently.
By filtering out the sub-50 Hz signals in these sectors, the
heart sounds could have been reduced significantly, causing a
considerably decrease in accuracy. Meanwhile, other sectors
that benefited from filtering out the sub-50 Hz signals are
located far from the heart, where the heart sound is just as
loud as the respiratory sounds. This suggests that the sub-50
Hz signal barely includes heart sounds.

C. Device Benchmarking

As discussed in the previous section, the device performed
best in heart sound detection at sectors FS1 and FS4. For fo-
cused evaluation against a clinical-grade gold standard, Sector
FS1 was selected due to its higher measurement precision.
Benchmarking was conducted using the KardiaMobile EKG,
yielding an MAE of 4.58 £ 2.54 BPM for a participant with
a near-normal BML.

In contrast, two additional participants with higher BMI
classifications—overweight and obese class [—showed sig-
nificantly elevated MAEs of 32.34 4+ 8.69 BPM and 31.37 &+
8.01 BPM, respectively. This variation may be due to in-
creased subcutaneous fat attenuating the acoustic signals,
reducing microphone sensitivity to heart sounds.

TABLE II: Heart Rate Benchmarking Results Using Kar-
diaMobile EKG at Sector FS1

Participant | BMI Category | BMI | MAE (BPM)
Participant 1 Near Normal 25.7 4.58 £ 2.54
Participant 2 Obese Class I 31.3 | 31.37 £ 8.01
Participant 3 Overweight 284 | 32.34 £ 8.69

D. Power Requirements

TABLE III: Average Power Consumption in Different Modes

Idle
24.050

Ratio
26.820

Transmission
34.854

Measuring
26.418

Ave Power (mW)

Table IIT shows the average power consumption across
three modes of operation. In Measure mode, the device simul-
taneously records data from the IMU and MIC for 20 seconds.
Transmission mode involves sending the recorded data via
BLE and consumes the most power. However, this only
occurs once every 20 seconds, limiting its impact on overall
power usage. Idle mode represents the device running without
active tasks, consuming the least power. The fourth column in
the figure shows the combined effect of the measurement and

transmission ratio. Although actual data transmission takes
approximately 0.785 seconds, we conservatively round this
to 1 second for estimation, reflecting the higher power usage
shown.

In summary, the battery life was evaluated based on the
measurement mode as shown in Table IV. Using Formula 4,
the computed battery life is 68.979h. This exhibits that the
device can last for more than two days before needing to be
recharged.

TABLE IV: Battery Life Evaluation of the Device

[ Regul Efficiency | Capacity (mAh) [ Battery Voltage (V) | Power (mW) [ Battery Life (h) |
\ ~ \ 500 \ 37 [ 2682 | 6919 |

IV. CONCLUSION AND RECOMMENDATIONS

This study successfully developed a compact, wearable au-
dio acquisition system that captures 20-second physiological
sound recordings and transmits them to a mobile application
via Bluetooth Low Energy (BLE). The system also synchro-
nizes motion magnitude data using an onboard IMU, enabling
future implementation of noise reduction techniques such as
adaptive filtering.

From the statistical analyses of the experiments across
different auscultation sectors, heart rate (HR) calculations
performed best at FS1 and FS4, with ECG MAE scores
of 5.23 + 1.79 BPM and 5.18 £ 6.58 BPM, respectively.
While these values slightly exceed the target MAE threshold
of < 5.21 BPM for resting-state measurements, they remain
close enough to suggest the system’s viability with further
refinement in signal processing and hardware. Benchmark-
ing against the KardiaMobile EKG confirmed the device’s
accuracy for individuals with near-normal BMI (MAE =
4.58,+,2.54 BPM), but showed significant degradation in
accuracy for overweight and obese participants. This sug-
gests that body composition may influence acoustic signal
transmission and should be considered in future algorithm
development and hardware calibration.

For respiratory rate (RR), the most accurate results were
observed at BS1, with an MAE of 1.98 + 1.21 BPM, well
within the acceptable error range of < 5.20 breaths per
minute. This highlights the reliability of the acoustic-based
RR measurements in static conditions.

Additionally, the walking experiment conducted at sector
WEFS2 produced comparable results to FS2, with an ECG
MAE score of 6.48 £ 4.12 BPM. Although this falls within
the relaxed threshold of < 9.33 BPM for motion scenarios,
it also underscores the importance of accounting for potential
inaccuracies caused by motion artifacts—both in the test
device and in the control measurement.

Compared to the earlier work of Monasterial et al., which
focused on software-based algorithm validation using a smart-
phone microphone and an available online dataset, this study
was able to improve upon their approach by embedding the
processing pipeline into a wearable hardware prototype [12].

For future researchers, it is recommended to look into
signal acquisition, particularly with the directionality of the
mic and soundproofing from ambient noise. A more sophis-
ticated signal processing algorithm could be made with the



help of the IMU data, to which we could apply adaptive
noise cancelling to that data. An improvement on the mo-
bile application backend implementation for it to be truly
embedded within the application could also improve the
system. Furthermore, the range of frequency and auscultation
placement should be further studied to be able to identify the
most optimal frequency range for each sector. Lastly, it is
recommended to have a larger quantity of patients to verify
the device’s performance in a wide variety of demographics
to be able to observe changes due to patient characteristics.
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