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Abstract—In this paper, we present a comparative evaluation of
four models, namely CNN, VGG16, Conformer, and YAMNet, as
core components of a skateboard riding sound detection system.
This system is designed to help reduce monitoring costs in public
areas where unauthorized skateboarding may cause pedestrian
obstruction or noise problems. We focus on the trade-off between
model complexity, measured by the number of parameters, and
detection performance, as well as the robustness of each model
in realistic noisy environments. Experimental results show that
the VGG16-based model achieves the highest performance, with
area under the curve (AUC) values of 0.987 and 0.948 for clean
and noisy test data, respectively. Notably, the CNN model, despite
having fewer parameters and lacking pre-training, demonstrates
strong performance, outperforming YAMNet and Conformer
under noisy conditions, with AUC values of 0.970 and 0.904 for
clean and noisy test data, respectively.

I. INTRODUCTION

Skateboarding is a fascinating sport that combines accessi-
bility, thrill, and a sense of accomplishment. However, skate-
boarding in areas other than designated areas can cause pedes-
trian obstruction and noise problems. This is also the case in
Odori Park, one of the most famous parks in Japan, located in
the center of Sapporo, Hokkaido. In a survey of 480 Sapporo
residents conducted in 2021, skateboarding was cited as the
most common complaint about Odori Park (169 responses),
more than street smoking or bicycling. Despite the fact that
skateboarding is prohibited by the Sapporo City ordinance,
the city of Sapporo has implemented security patrols in Odori
Park as skateboarding continues to be a common activity in
the park. These patrols have proven somewhat effective, but
continuous monitoring remains costly [1].

Therefore, we propose a skateboard riding sound detection
system to reduce monitoring costs. In such a system, the
discrimination performance of the model is important, and it is
necessary to maintain high discrimination accuracy, especially
when different sounds are mixed in a real environment. In
this paper, we compare and evaluate the acoustic identification
technique, which is the core of the skateboarding sound detec-
tion system, using four models: CNN, VGG16 [2], Conformer,
and YAMNet. We discuss the trade-off between the number
of parameters and performance of each model, and their
effectiveness in real environments. We also focus on noise
robustness as a critical factor for practical deployment, given
the complex acoustic environment of the urban park.

The remainder of this paper is organized as follows. Section
IT describes the overview of the proposed skateboard riding
sound detection system, the dataset used for our comparative
evaluation of the models, and the features used as input to the
models. Section III presents the architectures of the models
evaluated in this paper, including CNN, VGG16, Conformer,

979-8-3315-6946-4/25/$31.00 ©2025 IEEE

Skateboard riding sound

A

M/ - Single-board T
Al cgomputers
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TABLE I
DATASETS BREAKDOWN, COUNTS OF FOUR-SECOND CLIPS

| Positive (skateboard) | Negative (others)

Train 1,353 3,656
Validation 338 913
Test 422 1,142

Total [ 2,113 [ 5,711

Continuous skateboard sounds throughout the four-second duration are labeled
as positive samples, while other sounds are labeled as negative samples.

and YAMNet. In Section IV, we present the experimental
results and discuss the performance under clean and noisy test
scenarios. Finally, Section V concludes the paper and outlines
directions for future work.

II. SYSTEM OVERVIEW AND DATASET
A. System Overview

Figure 1 shows the overview of the skateboard riding
sound detection system. Environmental sounds are acquired
through microphones and converted into acoustic features
for identification by models installed on the single-board Al
computers. The single-board Al computers are small and easy
to reposition, making them suitable for installation in various
locations within the park. When skateboard riding sounds are
detected, notifications are sent to the park management office
via wireless communication. This system eliminates the need
for constant monitoring and enables efficient patrolling by
security personnel.

B. Dataset Collection

To collect skateboard riding sounds in real environments,
recordings were made in Odori Park, Sapporo, Hokkaido.
A TASCAM DR-07X [3] was used for recording, with a
sampling frequency of 48,000 Hz and a quantization bit depth
of 16Dbits. Recordings were primarily conducted during sum-
mer evenings between 7 and 9PM, collecting approximately
120 minutes of data in total. The recorded sounds mainly in-
cluded fountain sounds, voices, singing, footsteps, and vehicle
sounds, along with skateboard riding sounds.

The collected data was segmented into four-second clips,
classifying those with continuous skateboard sounds through-
out the four-second duration as positive samples and others
as negative samples. Table I shows the breakdown of the



TABLE II
FEATURE EXTRACTION PARAMETERS

Parameter name | Parameter value/type

16 kHz
25 ms for YAMNet, 64 ms for others
10 ms for YAMNet, 32 ms for others

Sampling rate
Frame length
Shift length

Windowing Hanning window
Log-mel spectrum,
Feature 64- and 128-dimensional for
YAMNet and others, respectively
TABLE III
COMPARISON OF MODEL ARCHITECTURES
Model | # params | Pre-trained | Input size
CNN 2.8 million No 128x124x 1
VGG16 | 14.8million | ImageNet | 128x124x3
Conformer 1.7 million No 128x124x1
YAMNet 3.9 million | AudioSet 64 x 96 x8

# params: number of parameters.
TABLE IV
MODEL TRAINING PARAMETERS AND STRATEGY

Parameter name \ Parameter value/type
Optimizer AdamW with weight decay of 0.01
Loss function Binary cross entropy
Batch size 128
Maximum epochs 20 to 160
Conformer: 5x107%, CNN: 107°,
VGG16: 107°, YAMNet: 1073
Warmup and cosine decay
40 epochs patience

Learning rates

Learning rate scheduler
Early stopping

We adopt a warmup strategy by linearly increasing the learning rate during
the first five epochs, and then apply cosine decay. The AdamW optimizer
was used with a weight decay of 0.01 to prevent overfitting and improve
generalization. Training parameters including learning rate and number of
epochs were optimized for each model through preliminary experiments.

dataset. It forms an imbalanced dataset with a higher number
of negative samples than positive samples.

C. Feature Extraction

We employ log-mel spectrograms as input features for
skateboard riding sound detection purposes. Feature extraction
is performed using the Librosa library [4], with parameters
listed in Table II. Each four-second audio segment is trans-
formed into a spectrogram of dimensions 128x124, where
128 corresponds to the number of mel frequency bins, and
124 to the number of time frames. Note that for the YAMNet
classifier, which uses pre-trained weights on AudioSet, differ-
ent parameters are used: frame length of 25 ms, shift length
of 10ms, and a 64-dimensional log-mel spectrum.

III. MODEL ARCHITECTURES

In this section, we describe the architectures of the four
models evaluated in this paper. Each model was selected based
on its distinct architectural characteristics:

o CNN for its simplicity and locality,

e VGGI16 for deep convolutional structure and pre-training,

o Conformer for long-range dependencies, and

o YAMNet for lightweight event classification on mobile

devices.
Tables III and IV show a key network parameter comparison
and the model training parameters, along with the strategy,
respectively. For all four models, the output layer is modified
to be suitable for skateboard riding sound classification.

A. CNN

Figure 2 shows the architecture of the simple convolutional
neural network (CNN) used in this paper. The CNN captures
local features using convolutional layers, reduces the dimen-
sionality with pooling layers, and performs final classification
using fully connected layers. Our proposed model consists
of six 2D convolutional layers, one average pooling layer,
one global average pooling layer, and two fully connected
layers. The first five convolutional layers use a kernel size
of 3x3 and a stride of 1, with the number of channels set
to 32, 64, 128, 256, and 512, as shown in Fig. 2. After the
fifth convolutional layer, a 2x2 average pooling layer with
a stride of two is applied to reduce the spatial dimensions.
Then, a sixth convolutional layer with 256 channels is applied
to further refine the features. The global average pooling layer
aggregates the feature map into a single value per channel, and
the final fully connected layer outputs the classification result.
The total number of parameters in this model is approximately
2.8 million.

B. VGGI6

Figure 3 shows the VGGI16-based architecture used in
this paper. The original VGG16 consists of 13 convolutional
layers, five max-pooling layers, and three fully connected
layers. Among these layers, 16 layers, convolutional and fully
connected layers, have tunable parameters. In this paper, we
modified it by replacing the flatten layer with a global average
pooling layer as shown in Fig. 3. We experimentally confirmed
that our modification had no significant effect on performance.
The input size is 128x 124 x3 since VGG16 requires a three-
channel input. We convert the input feature data from a
spectrogram of dimensions 128x124x1 to 128x124x3 by
duplication. Note that we utilize the weights pre-trained on
ImageNet [5] to fine-tune the model. The total number of
parameters in the model is approximately 14.8 million.

C. Conformer

Figure 4 shows Conformer architecture [6], which combines
the local feature extraction capabilities of CNNs with the long-
range dependency modeling abilities of the Transformer [7].
The model consists of multiple Conformer blocks, each of
which effectively integrates a multi-head self-attention module
(MHA), a convolutional module, and a feed-forward module
(FEN).

Following the official PyTorch documentation [8], we set
the kernel size of the first and second convolutional layers
to 3x3 and the convolution modules in conformer blocks to
31. Considering the constraints of running on edge devices,
we set the model dimension to 128 and the feed-forward
network dimension to 256. The number of Conformer blocks
and attention heads are both set to four. Although these values
are smaller than those used in original Conformer models,
we experimentally confirmed that the performance was not
significantly degraded for this task. For positional encoding,
we employ absolute positional encoding as proposed in [7].
The total number of parameters in this model is approximately
1.7 million.
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Fig. 2.
of parameters is 2.8 M, the smallest
among the models. No pre-training is
used.

CNN model. The number

Fig. 3.
number of parameters is 14.8 M, the
largest among the models. Pre-trained
on ImageNet.

VGG16-based model. The

D. YAMNet

Figure 5 shows the architecture of YAMNet [9], an audio
event classifier based on MobileNetV1 [10], where depthwise
separable convolutions are utilized. In this paper, we fine-
tune a model pre-trained using AudioSet [11]. To adapt it to
our task, we follow the official documentation of YAMNet,
where each four-second audio clip at 16 kHz is converted into
data of size 8x1,024, as shown in Fig. 5. For comparison
purposes, we describe the details of the YAMNet input feature,
which has dimensions of 64x96x8. Each four-second audio
clip is segmented into eight patches, with each patch having a
duration of 0.96 seconds and a stride of 0.48 seconds. Since the
frame shift for YAMNet is 10 ms, as shown in Table II, each
patch contains 96 frames, each of which has a 64-dimensional
log-mel spectrum. The total number of parameters in this
model is approximately 3.9 million.

IV. COMPARATIVE EVALUATION RESULTS

In this paper, we use the following metrics to evaluate model
performance:

o Precision = TP/(TP+FP): the proportion of samples pre-
dicted as positive that were actually positive.

« Recall = TP/(TP+FN): the proportion of actual positive
samples that were correctly predicted as positive.

o PR curve (precision-recall curve): a graph visualizing
the relationship between precision and recall, which is
suitable for evaluating imbalanced datasets.

o AUC (area under the curve): the area under the PR curve,
where values closer to one indicate better performance.

A. Model Performance Comparison

Figure 6 shows the PR curves and corresponding AUC
values for each model. The VGG16-based model attains the
highest AUC of 0.987, followed by the CNN model at 0.972,
YAMNet at 0.967, and the Conformer-based model at 0.947.

VGG16, despite having the largest number of parameters
(14.8 million), leveraged transfer learning from ImageNet
and achieved the best result. This suggests that pre-trained
visual features, even from a different domain, can benefit
audio-related tasks when properly adapted. The CNN model,
though much lighter (2.8 million parameters) and trained from
scratch, still performed comparably well, highlighting the ef-
fectiveness of compact convolutional designs with appropriate
depth. YAMNet and the Conformer-based model, both with
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Fig. 4. Conformer-based model. The
number of parameters is 1.7M. No
pre-training is used.

Fig. 5. YAMNet model. The number
of parameters is 3.9 M. Pre-trained on
AudioSet.

relatively low parameter counts and different architectural
focuses, showed slightly lower AUCs. YAMNet uses a log-
mel spectrogram input and depthwise separable convolutions,
benefiting from AudioSet pre-training. The Conformer-based
model incorporates self-attention mechanisms but uses fewer
convolutional layers, which might have limited its ability to
effectively extract localized features.

These results indicate that model performance is influenced
not only by parameter size, but also by the combination of
architecture, pre-training, and input representation.

B. Evaluation Under Noisy Conditions

We evaluated model performance under noisy environments
using the following three types of noise from NOISEX-
92 [12]:

e Clean data (C)

« Speech babble noise (B)

o White noise (W)

e Machine gun noise (M)

These noises were added to recorded data to achieve a signal-
to-noise ratio (SNR) of 0, resulting in three distinct noisy
datasets. At 0dB, the skateboard riding sound can still be
perceptible under close listening. Combined with the clean
data, we constructed a multi-condition training dataset (Train:
C+B+W+M), that was four times the size of the original
dataset shown in Table I.

Figure 7 shows the evaluation results using clean data
(Test: C) as the test data, while Fig. 8 presents the results
using data with speech babble noise (Test: B). Both results
are obtained using the models trained on the multi-condition
dataset (Train: C+B+W+M).

Among all models, the VGG16-based model achieves the
highest performance in both cases, with AUCs of 0.987 on
clean and 0.948 on noisy data. Despite its large number of
parameters, its use of ImageNet pre-training and deep convo-
lutional structure likely contributed to its superior robustness.

The CNN model, although significantly smaller and trained
from scratch without any pre-training, exhibited strong per-
formance with an AUC of 0.970 on clean data and 0.904
under noisy conditions. Notably, CNN outperformed both
YAMNet and the Conformer-based model in the noisy setting,
demonstrating its relative robustness even without external
feature priors.

YAMNet, pre-trained on AudioSet, showed a moderate drop
in performance from 0.954 on clean data to 0.861 under noisy
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conditions. The Conformer-based model, having the fewest
parameters and no pre-training, exhibited the lowest AUCs
of 0.944 on clean and 0.841 on noisy data. This suggests that
while compact and efficient, these models are more susceptible
to noise, possibly due to limited convolutional capacity.

To further contextualize these findings, Fig. 9 plots model
AUCs against their parameter sizes. While VGG16 achieves
the highest accuracy at the cost of model size, CNN offers
a compelling trade-off, maintaining high robustness under
noise despite its lightweight and absence of pre-training. This
contrasts with YAMNet and Conformer, whose compactness
and alternative architectural choices result in decreased gen-
eralization in noisy environments.

These results highlight that, although model size and pre-
training can enhance robustness, architectural factors such as
convolutional depth and local receptive fields, which are well
embodied by VGG16 and CNN, remain critical for reliable
sound detection in real-world noisy conditions.

V. CONCLUSION

In this paper, we compared the performance of four model
architectures, CNN, VGG16, Conformer, and YAMNet, for use
in the skateboard riding sound detection system. The results
showed that models with deep convolutional layers, such as
CNN and the VGG16-based model, achieved higher classi-
fication performance. Furthermore, applying multi-condition

noise (Train: C+B+W+M, Test: B)

training with various types of environmental noise enabled the
VGG16-based model to maintain high performance under both
clean and noisy conditions, indicating strong noise robustness
despite its larger model size. As future work, we plan to
evaluate the model’s performance in more complex real-
world scenarios, such as environments with overlapping wheel
sounds from strollers and luggage, to further enhance the
system’s practical applicability.
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