
Optimizing Filipino Text-to-Speech Synthesis:
Integration of Generative Models

Josephine Jane Gapuz*, Dean Kyle Mariano*, Jezler Recto*, Rhandley Cajote*, John Cairu Ramirez*
*Electrical and Electronics Engineering Institute

University of the Philippines Diliman
Quezon City, Philippines

{josephine.jane.gapuz, dean.kyle.mariano, jezler.recto, rhandley.cajote, john.cairu.ramirez}@eee.upd.edu.ph

Abstract—This paper explored the development of an opti-
mized text-to-speech (TTS) system for Filipino by integrating
two advanced generative models: FastSpeech 2 and Tacotron 2.
Since Filipino is a low-resource language for TTS, we leveraged
the Filipino Speech Corpus—which includes over 150 hours of
annotated audio—to create model-specific datasets. Preprocessing
steps using the Montreal Forced Aligner, phoneme-level pitch and
energy normalization were implemented in FastSpeech2 to ensure
precise spectral mapping. In contrast, Tacotron 2 was trained
on gender-specific datasets to better capture natural prosody
variations. Each synthesis pipeline paired its model with a state-
of-the-art vocoder: WaveGlow for Tacotron 2 and a universal
HiFi-GAN for FastSpeech 2.

Objective evaluation was performed using the mel-cepstral
distance metric to compare the spectral characteristics of the
synthesized speech against ground truth recordings. Subjective
listening tests including Mean Opinion Score (MOS) assessments
and AB tests were conducted in a controlled lab environment
in which the insights were provided to analyze perceptual
naturalness and intelligibility of synthesized speech. Overall, the
results indicate that while both models contribute to improving
Filipino TTS, the FastSpeech 2 surpassed Tacotron 2 in MCD
however Tacotron 2 produced higher MOS ratings and more
natural-sounding speech than FastSpeech 2.

This study offers a useful framework and insights in enhancing
TTS systems despite using low-resource languages, which could
help expand access to digital voice applications and guide future
research in speech synthesis.

Index Terms—TTS, Tacotron 2, FastSpeech 2, Filipino speech
synthesis, montreal forced aligner

I. INTRODUCTION

Text-to-speech (TTS) systems convert written text into syn-
thetic speech and have significantly contributed to the digital
accessibility revolution [4]. The field of TTS is multidisci-
plinary, intersecting linguistics, signal processing, and deep
learning—particularly generative models that aim to produce
human-like prosody and articulation.

The development of natural and intelligible TTS systems
for low-resource languages like Filipino presents unique chal-
lenges due to limited datasets. Among these, Tacotron 2 and
FastSpeech 2 have emerged as widely adopted architectures for
speech synthesis in multiple languages, demonstrating reliable
performance in both high- and low-resource settings [1], [2].
Tacotron 2 is known for generating expressive and natural-
sounding speech in various languages, while FastSpeech 2
is a more recent approach that improves training efficiency
and synthesis speed [2]., making it a compelling choice for
evaluating TTS in Filipino for the first time in this context.

Previous studies on Filipino TTS used Tacotron 2 and
WaveGlow with promising results [1]. Moreover, some studies

have also experimented with Tacotron 2-based pipelines. For
instance, Tatoy et al. [5] introduced a harmonic-plus-noise
network with linear prediction and perceptual weighting filters
to enhance the Tacotron 2 baseline. Their system achieved
significantly lower Mel-Cepstral Distortion (MCD) and higher
perceptual quality through vocoder-level innovations. Mean-
while, earlier work by Renovalles et al. [1] compared unit
selection and deep learning systems using Tacotron 2, but
noted low MOS scores due to limited training steps and lack
of data augmentation.

For FastSpeech 2, forced alignment systems like the Mon-
treal Forced Aligner (MFA) also helped in determining the
exact timing of each phoneme in a spoken word, which is
critical for generating natural prosody and accurate phoneme-
to-frame alignment [3].

This project designed a TTS system specifically for the Fil-
ipino language, incorporating generative models in generating
human-like speech with a natural prosody. To evaluate the
quality of synthesized speech, both subjective and objective
evaluation methods were used, such as the Mean Opinion
Score (MOS) assessment, AB listening test, and Mel-Cepstral
Distortion (MCD) measure.

Overall, this project aimed to further enhance commu-
nication accessibility for the local community through the
integration of Filipino speech corpora, acoustic models, and
the use of deep learning-based text-to-speech models.‘

II. METHODOLOGY

A. Data Preparation

The data preparation process for the FastSpeech 2 and
Tacotron 2 models was conducted in three main stages: data
acquisition, preprocessing, and alignment.

1) Data Acquisition: This study utilized the Filipino Speech
Corpus (FSC), created by the University of the Philippines
Diliman Electrical and Electronics Engineering Institute Dig-
ital Signal Processing Laboratory. The FSC comprises four
volumes of speech recordings from 115 speakers, totaling over
150 hours of annotated audio.

For this project, two distinct speaker subsets were tailored
to the architectural needs of each TTS model. FastSpeech 2
was trained using 37 speakers (18 male, 19 female), while
Tacotron 2 used 18 speakers (7 male, 11 female). The selection
criteria prioritized recordings with clear articulation, consistent
prosody, minimal background noise, and accurate transcrip-
tions to ensure stable training. Tacotron 2’s autoregressive
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Fig. 1. Methodology Overview

structure is more sensitive to noisy or varied data, so it was
trained on smaller, curated gender-specific datasets to reduce
variability. In contrast, FastSpeech 2 benefits from broader
speaker diversity to improve multi-speaker generalization and
speaker embedding robustness. While the subsets differ in size
and structure, there is partial overlap, 11 speakers are shared
across both models (e.g., IDs 002, 003, 015, 025, 070, 081,
098), allowing for a fair yet context-aware comparison. This
design balances architectural strengths with data quality con-
straints, enabling both models to be trained under conditions
that suit their intended performance goals.

2) Data Preprocessing: The recordings and corresponding
transcriptions were segmented into durations of less than 10
seconds to mimic other datasets, LJSpeech or LibriTTS, used
in TTS. Shorter segments help ensure more stable alignment
and improves training efficiency. For FastSpeech 2, addi-
tional preprocessing steps were necessary, including dictio-
nary augmentation and acoustic model training. Dictionary
augmentation was carried out using a grapheme-to-phoneme
(G2P) model to generate phonetic transcriptions for out-of-
vocabulary words [7]. An acoustic model was then trained
using the segmented corpus and the augmented lexicon to
enable accurate phoneme-to-audio alignment [8].

3) Data Alignment for FastSpeech 2: Phoneme-level time
alignments required for training FastSpeech 2 were obtained
using the Montreal Forced Aligner (MFA), an open-source
speech-text alignment system built upon the Kaldi framework
[9].

Using the split corpus, augmented phonetic dictionary, and
trained acoustic model, MFA generated time-aligned transcrip-
tions in the form of TextGrid files. These files provided precise
alignment of phonemes and words to the audio, forming
structured and reliable inputs of the FastSpeech 2 training

pipeline.

B. Training Tacotron 2 and WaveGlow Vocoder

1) Dataset Preprocessing: The Tacotron 2 training pipeline
required additional preprocessing to conform to the dataset
structure used in LJSpeech-1.1. Recordings from the 7 male
speakers were consolidated into a single male dataset, while
those from the 11 female speakers formed a separate female
dataset. Accordingly, Tacotron 2 was trained on two distinct
gender-specific datasets.

The resulting datasets consisted of audio samples in .wav
format and an associated metadata.csv file. From this metadata,
file list directories were generated, each containing text files
that mapped audio file paths to their corresponding transcrip-
tions. These lists facilitated the organization of the dataset into
training, validation, and testing partitions. Transcriptions were
maintained at the sentence level to ensure consistency with the
LJSpeech-1.1 format.

Mel-spectrograms were extracted from the audio files and
stored separately. These served as the model inputs during
Tacotron 2 training. The specific preprocessing parameters
used in this stage are summarized in Table I.

TABLE I
TACOTRON 2 PREPROCESSING PARAMETERS

Parameter Value
Sampling rate 22050 Hz
Filter length 1024
Hop length 256

Window length 1024
Mel Fmin 0
Mel Fmax 8000

Mel channels 80

2) Tacotron 2 Model Training: The Tacotron 2 model
was implemented based on the official NVIDIA Tacotron 2
repository [6]. A pre-trained model, originally trained on the
LJSpeech-1.1 dataset for 6000 epochs with a batch size of 100,
was fine-tuned using a subset of the Filipino Speech Corpus.
Fine-tuning was conducted for an additional 700 epochs using
an NVIDIA A100 GPU on Google Colab. The training process
required approximately 16 hours for the male dataset and 28
hours for the female dataset. The training parameters used
during fine-tuning are summarized in Table II.

TABLE II
TACOTRON 2 TRAINING PARAMETERS

Parameter Value
Learning rate 1e-3

Epochs 700
Batch size 128

Weight decay 1e-6
Grad clip thresh 1.0

cuDNN Enabled
AMP Enabled

3) WaveGlow Vocoder Training: To synthesize waveforms
from the outputs of the Tacotron 2 model, the WaveGlow
vocoder from the same repository [6] was employed. The
audio samples used for training were sourced form the wavs
directory. A pre-trained WaveGlow model, originally trained



on LJSpeech-1.1 dataset for 3000 epochs with a batch size of
10, was fine-tuned using a subset of the FSC. Fine-tuning was
conducted for an additional 500 epochs on an NVIDIA A100
GPU via Google Colab, requiring approximately 7.25 hours
for the male dataset and 12.5 hours for the female dataset.
The training parameters utilized are detailed in Table III.

TABLE III
WAVEGLOW TRAINING PARAMETERS

Parameter Value
Epochs 500

Batch size 16
Segment length 8000
Weight decay 0

Grad clip thresh 65504.0
cuDNN Enabled

cuDNN benchmark Enabled
AMP Enabled

C. Training FastSpeech 2 and Utilizing Universal HiFi-Gan
Vocoder

1) Data Preprocessing: Following initial preprocessing, the
subset for FastSpeech 2 underwent additional cleaning and
feature extraction. The specific parameters used during this
stage are listed in Table IV.

In addition to this, phoneme-level pitch and energy normal-
ization were applied and four key acoustic features, namely,
duration, energy, mel spectrogram, and pitch, were extracted
for each utterance. The subset was then partitioned into train-
ing and validation sets, with the latter used to monitor and
evaluate model performance throughout training.

TABLE IV
FASTSPEECH 2 PREPROCESSING PARAMETERS

Parameter Value
Validation size 512
Sampling rate 22050 Hz

Max wav value 32768.0
Filter length 1024
Hop length 256

Window length 1024
Mel channels 80

Mel Fmin 0
Mel Fmax 8000 Hz (HiFi-GAN)

2) Speaker Encoding: To enable multi-speaker modeling,
each of the 37 speakers in the dataset was assigned a unique
identifier, which was used to generate speaker embeddings.
Table V presents the mapping between speaker identifiers and
corresponding speaker IDs.

3) Phoneme Adaptation: The FastSpeech 2 framework, as
implemented in FastSpeech2 GitHub repository [11], was orig-
inally configured to support English and Chinese phonemes.
To accommodate Filipino phonemes, 18 vowels and 25 con-
sonants were incorporated as shown in Table VI.

4) Model Training: The model was trained for 200,000
steps on an NVIDIA A100 GPU using Google Colab. The
total training time was approximately 12 hours. The hyperpa-
rameters during training are listed in Table VII.

TABLE V
SPEAKER ID MAPPING

Speaker ID Speaker ID Speaker ID
025 0 026 1 103 2
081 3 063 4 038 5
065 6 098 7 002 8
013 9 008 10 106 11
076 12 041 13 012 14
101 15 109 16 009 17
033 18 080 19 075 20
003 21 031 22 082 23
099 24 107 25 007 26
070 27 032 28 036 29
039 30 062 31 108 32
068 33 097 34 028 35
015 36

TABLE VI
PHONEME ADAPTATION

Vowels Consonants
AA, AE, AH, AO, AW,
AX, AY, EH, ER, EY,

IH, IX, IY, OW, OX, OY,
UH, UW

B, CH, D, DH, F, G, H,
JH, K, L, M, N, NG, NY,
P, R, S, SH, T, TH, V, W,

XL, Y, Z

D. Inference and Evaluation

1) Tacotron 2 Inferencing: Inferencing was conducted using
the Tacotron 2 and WaveGlow checkpoints (.pt file) produced
during training, following the setup from the original reposi-
tory [6]. Key parameters used for inference are presented in
Table VIII.

To assess whether the models effectively learned over time,
the final training and validation losses for Tacotron 2 and
WaveGlow were recorded and are shown in Tables IX and X.
Their differences provides insignt into potential overfitting or
underfitting during the training process.

2) FastSpeech 2 Inferencing: A universal HiFi-GAN
vocoder [12], pre-trained on LibriSpeech, VCTK, and
LJSpeech datasets, was utilized for inference. The best check-
point for inference was selected based on objective perfor-
mance, specifically Mel-Cepstral Distortion (MCD) evalua-

TABLE VII
FASTSPEECH 2 TRAINING PARAMETERS

Parameter Value
Batch size 32

Betas (0.9, 0.98)
Epsilon 1e-9

Grad clip threshold 1.0
Warm-up steps 4000

Total training steps 200,000

TABLE VIII
TACOTRON 2 INFERENCING PARAMETERS

Parameter Value
Include warm up Enabled

FP16 Enabled
Sigma infer 0.7

Denoising strength 0.07



TABLE IX
TACOTRON 2 TRAINING LOSS AND VALIDATION LOSS

Gender Epochs Training Loss Validation Loss Difference
Male 700 0.1663 0.3549 0.1886

Female 700 0.1359 0.2505 0.1146

TABLE X
WAVEGLOW TRAINING LOSS AND VALIDATION LOSS

Gender Epochs Training Loss Validation Loss Difference
Male 500 -7.7449 -7.7353 0.0095

Female 500 -6.8449 -6.8089 0.0360

tions. Model performance was assessed at 10,000-step intervals
to identify the optimal checkpoint, as summarized in Table XI.

Lower-step checkpoints exhibited improved objective and
subjective performance, as evidenced by smaller training and
validation loss differences and superior MCD scores. Loss
curves revealed that training began to plateau around 30,000
steps, suggesting convergence. Notably, the checkpoint at
34,000 steps achieved the lowest MCD values of 4.07 for male
and 5.51 for female speakers, indicating the highest spectral
similarity to the original recordings.

TABLE XI
MODEL EVALUATION ACROSS TRAINING STEPS

Step Train Loss Val Loss Diff. MCD (Male/Female)
10k 1.9162 2.5743 0.6581 4.68 / 6.11
20k 1.3587 2.6886 1.3299 4.43 / 5.80
30k 1.2981 2.7167 1.4186 4.23 / 5.51
33k 1.3117 2.7475 1.4258 4.20 / 5.43
34k 1.3385 2.7237 1.3852 4.07 / 5.51
35k 1.3292 2.7336 1.4044 4.43 / 5.55
40k 1.1360 2.7645 1.6285 4.13 / 5.54
50k 1.2181 2.8003 1.5822 4.20 / 5.68

3) Mel-Cepstral Distance Metric: For the objective metric,
the mel-cepstral distance metric was utilized to quantify spec-
tral distortion between ground truth and synthesized speech
for both models. The implementation provided in [10] was
employed for this computation. This metric specifically as-
sesses differences in the spectral envelopes of the two audio

Fig. 2. Tacotron 2 and WaveGlow Training Loss

Fig. 3. FastSpeech 2 Training Loss

signals, offering an objective measurement of how closely the
synthesized speech matches the original recordings.

4) Mean Opinion Score: A subjective listening test was
conducted following the ITU-T P.800 recommendation for
speech quality assessment [13]. The test took place in the
Whisper Room of the Digital Signal Processing (DSP) lab-
oratory at the EEE department, ensuring minimal external
noise interference. Thirty participants rated 40 audio samples,
consisting of 20 FastSpeech 2 (FS2) samples and 20 Tacotron
2 (TC2) samples, on a five-point scale. The audio samples for
each model are grouped into female and male voices, with
each gender having 5 samples from both custom input and
ground truth synthesis.

Participants rated each sample based on the level of effort
required to understand the speech:

• 1 - No meaning understood with any feasible effort
• 2 - Considerable effort required
• 3 - Moderate effort required
• 4 - Attention necessary; no appreciable effort required
• 5 - Complete relaxation possible; no effort required

Each participant provided subjective assessments on the
effort required to understand the meaning of sentences.

5) AB Listening Test: To evaluate the perceptual quality of
synthesized speech, we conducted an AB preference listening
test comparing each synthesized system, FastSpeech 2 and
Tacotron 2, against ground truth recordings. Participants were
presented with pairs of audio samples, one from the ground
truth (GT) and the other from the synthesized speech, in ran-
domized order. They were then asked to choose which sample
sounded the best to them. Thirty participants were involved
in the test. Fifteen participants evaluated 20 FastSpeech 2
vs. ground truth pairs, while the other fifteen evaluated 20
Tacotron 2 vs. ground truth pairs.

To ensure fair comparison, white noise was injected into
the ground truth recordings to match the noise level typically
present in the synthesized outputs. White noise was generated
in MATLAB based on the average noise levels detected in the
synthesized samples, and added to the ground truth recordings
at a signal-to-noise ratio (SNR) of 40 dB.



To assess the statistical significance of listener preferences,
a binomial test was performed using jamovi [14]. This non-
parametric statistical test is appropriate for analyzing binary
outcome data under the null hypothesis that participants have
no preference between two samples (0.5 probability of choos-
ing either).

III. RESULTS AND DISCUSSION

A. Mel-Cepstral Distance (MCD) Analysis

Lower Mel Cepstral Distortion (MCD) values indicate a
closer resemblance to natural speech. In our experiments, Fast-
Speech 2 achieved lower MCD values compared to Tacotron
2. FastSpeech 2 produced an average MCD of 7.95 dB for
male speakers and 9.18 dB for female speakers, while Tacotron
2 registered average values of 14.95 dB and 10.44 dB for
male and female speakers, respectively. One factor influencing
these results is the structure of the training dataset used for
Tacotron 2. In the experiments, the multi-speaker dataset was
reformatted into a single-speaker version. This reformatting
likely diminished unique speaker-specific characteristics, such
as consistent voice quality, which are vital for effective spectral
modeling. In contrast, FastSpeech 2 was trained using the
original multi-speaker structure, which allowed it to capture
the natural variability among speakers.

Compared to recent work in Filipino speech synthesis,
notably the study by Tatoy et al. [5], our MCD scores are
higher in absolute value. Their Harmonic-plus-Noise (H+N)
systems, such as HN-PWG and HN-PWG-PW, achieved sig-
nificantly lower MCD values (e.g., 0.6983 and 0.7048, respec-
tively), attributed to perceptual weighting and linear prediction
techniques. However, our study utilizes mainstream neural
TTS architectures without specialized enhancements, focusing
on the integration of multispeaker corpora and standardized
vocoders. Despite the higher distortion values, FastSpeech 2
still achieves a substantial improvement over our Tacotron 2
implementation and offers a competitive benchmark in Filipino
TTS using a simpler pipeline.
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Fig. 4. Mel-Cepstral Distance Measure Comparison

B. MOS Listening Test Results

The MOS results clearly show a difference in perceived
speech quality between FastSpeech 2 and Tacotron 2. Partic-
ipant ratings indicate variations in naturalness, intelligibility,
and the listening effort required to understand the synthesized
speech. A gender-based analysis of the MOS scores reveals
differences in listener perception among male and female
groups. Overall, Tacotron 2 received an average MOS of 4.31,
compared with 3.20 for FastSpeech 2, suggesting that listeners
expended less effort when understanding the speech generated

by Tacotron 2. In gender-specific evaluations, Tacotron 2 was
rated 4.59 for female voices and 4.04 for male voices, whereas
FastSpeech 2 scored 3.05 for female voices and 3.34 for
male voices. These results indicate that the Tacotron 2 model
produces synthesized speech that is subjectively superior and
easier to comprehend.

These results align with prior works emphasizing Tacotron-
based models’ capacity to generate smoother and more natural
prosody. In particular, Tatoy et al. [5] reported that their
Tacotron 2-based system scored significantly lower, with a
MOS of 2.31 ± 0.27, highlighting the perceptual advantage
introduced by their H+N vocoding techniques. The current
results suggest that Tacotron 2, combined with WaveGlow and
dataset merging, can produce perceptually high-quality speech
even without architectural modifications.

Historical comparison with the earlier work by Renovalles et
al. [1] further contextualizes our improvements. Their Tacotron
2 system, built with limited data and trained for fewer steps,
produced a maximum MOS of 2.01 after applying data aug-
mentation techniques (TACO-DA). Even their unit selection
system (MARY-B) only reached 3.05. In contrast, our Tacotron
2 implementation surpasses both benchmarks despite not using
complex prosody modifications or voice conversion. These
results support the effectiveness of our dataset structure and
model setup in improving perceptual quality under similar
resource constraints.

TABLE XII
MEAN OPINION SCORE

Category FastSpeech 2 Tacotron 2
Overall 3.20 4.31
Female 3.05 4.59
Male 3.34 4.04

C. AB Listening Test Results

In the AB listening test, listeners showed a strong preference
for natural ground-truth speech over the synthesized output
from both the FastSpeech 2 and Tacotron 2 models. These
results confirm that listeners can reliably distinguish between
natural and synthesized speech. In particular, the perceptual
gap was greater in FastSpeech 2 than in Tacotron 2. Partici-

TABLE XIII
AB LISTENING TEST

Category Ground Truth Synthesized
FastSpeech 2 294 6
Tacotron 2 240 60

pants selected ground truth speech in 294 out of 300 compar-
isons for FastSpeech 2 and in 240 out of 300 comparisons for
Tacotron 2. These results indicate that listeners consistently
distinguished natural recordings from synthesized speech.

A binomial test was conducted to assess the null hypothesis
of no preference (i.e., a 50/50 chance). The test yielded a p-
value of less than 0.001 for both models. The 95% confidence
interval for the proportion of ground truth selections ranged
from 0.957 to 0.993 for FastSpeech 2 and from 0.750 to
0.844 for Tacotron 2. These findings reinforce that listeners
overwhelmingly preferred natural speech over the synthesized



output of both models. The results are better shown in Fig. 5
and Fig. 6

These findings reaffirm the MOS results: Tacotron 2 gener-
ates more perceptually convincing speech than FastSpeech 2.
While Tatoy et al. [ [5] did not use AB tests, their extensive
MOS and statistical evaluations (e.g., ANOVA and Tukey-
Kramer tests) strongly support the superior listener experi-
ence of HN-enhanced architectures. Our AB results, while
expectedly favoring natural speech, demonstrate that Tacotron
2 narrows the perceptual gap more effectively than FastSpeech
2 in our test conditions. This complements Renovalles et
al.’s [1] findings, where earlier Tacotron 2 models exhibited
significant perceptual limitations—now overcome in our more
recent configurations.

Fig. 5. Binomial Test result for FastSpeech 2

Fig. 6. Binomial Test result for Tacotron 2

IV. CONCLUSION AND RECOMMENDATIONS

In conclusion, this study explored the performance of two
generative TTS models: Tacotron 2 and FastSpeech 2 for
synthesizing Filipino speech. A key difference lies in their
training approach: Tacotron 2 was fine-tuned from a pretrained
English model, which helped it quickly adapt to the Filipino
dataset despite limited data. This fine-tuning process allowed
the model to retain learned prosodic and linguistic patterns,
resulting in more natural and expressive speech output. In
contrast, FastSpeech 2 was trained from scratch using a multi-
speaker Filipino dataset, allowing it to generate various voices
but also making it more dependent on data quality and speaker
variation.

These methodological differences significantly influenced
the evaluation results. Tacotron 2 achieved higher subjective
scores such as a Mean Opinion Score (MOS) of 4.31 and
stronger AB test preference—due to its smoother prosody and
naturalness. However, FastSpeech 2 demonstrated better ob-
jective performance, with lower Mel-Cepstral Distance (MCD)
scores (7.95 for male and 9.18 for female), indicating better
spectral accuracy.

Still, both models faced limitations in generating long or
complex utterances due to the lack of extended speech samples

in the dataset. FastSpeech 2 also showed some phoneme mis-
alignments, affecting pronunciation stability. These findings
highlight the importance of using well-aligned datasets with
longer speaker durations and suggest that future work should
explore multi-speaker Tacotron 2 models and phoneme-level
inputs, while for FastSpeech 2, prosody injection and fine-
tuning on a pre-trained English model are recommended to
further improve Filipino TTS synthesis.
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