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Abstract—This study presents an ensemble-based approach
for cocoa pod disease classification by integrating transfer
learning with three ensemble learning strategies: Bagging,
Boosting, and Stacking. Pre-trained convolutional neural
networks, including VGG16, VGG19, ResNet50, ResNet101,
InceptionV3, and Xception, were fine-tuned and employed as
base learners to detect three disease categories: Black Pod
Rot, Pod Borer, and Healthy. A balanced dataset of 6,000
cocoa pod images was curated and augmented to ensure
robustness against variations in lighting, orientation, and
disease severity. The performance of each ensemble method
was evaluated using accuracy, precision, recall, and F1-score.
Experimental results show that Bagging consistently achieved
superior classification performance with a test accuracy of
100%, outperforming Boosting (97%) and Stacking (92%).
The findings confirm that combining transfer learning with
ensemble techniques improves model generalization and
reliability, making it a promising direction for precision
agriculture and automated crop disease management.

Index Terms—Cocoa pod disease classification, Transfer
learning, Ensemble learning, Convolutional neural networks
(CNNs), Deep learning

I. INTRODUCTION

Cocoa (Theobroma cacao), a high-value tropical crop
essential to global chocolate production, is severely threat-
ened by diseases such as Black Pod Rot and Pod Borer. In
the Philippines, it is recognized under Republic Act 7900
as a priority crop, yet disease outbreaks continue to impact
yield and quality. Accurate and timely detection of these
diseases is critical for effective management.

Recent developments in computer vision and machine
learning have shown potential in automating plant disease
diagnosis. In particular, transfer learning and ensem-
ble methods have demonstrated improved performance
in classification tasks. Ensemble learning combines the
predictions of multiple base classifiers to reduce variance,
enhance stability, and improve accuracy [1]-[3]. However,
its effectiveness relies on the diversity and quality of the
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base models used. Despite its promise, ensemble learning
has not been widely explored for cocoa pod disease
classification. Prior studies often utilized single classifiers
or traditional machine learning techniques, which may
fall short in addressing the complexity of disease patterns
and visual variability [4], [5]. This study proposes an
ensemble-based framework that integrates transfer learn-
ing models—such as VGG, ResNet, and others—as weak
learners within bagging, boosting, and stacking schemes.
By fine-tuning these pre-trained CNNs and systematically
combining their predictions, the research aims to iden-
tify the optimal ensemble configuration for maximizing
classification accuracy and reliability in cocoa pod dis-
ease detection. To address the limitations of single-model
classifiers and advance automated disease detection in
cacao cultivation, this research leverages ensemble learn-
ing techniques in conjunction with weak learners derived
from fine-tuned transfer learning models. The framework
aims to improve the accuracy and robustness of cocoa
pod disease classification by evaluating the performance
of different ensemble strategies and determining the most
effective method for maximizing predictive performance.
The remainder of this paper is organized as follows:
Section 2 presents the materials and methods used in this
study, including details on geometric correction technique
and cloud removal algorithm. Section 3 discusses the
experimental results and comparative performance against
existing approaches. Finally, Section 4 concludes the study
with a summary of findings and potential directions for
future research.

II. RELATED WORK

Ensemble learning has gained prominence in improving
classification accuracy by combining multiple base models
to reduce variance and bias [1], [3]. The three main
types—bagging, boosting, and stacking—operate either in
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Fig. 1: The conceptual framework of the proposed solution.

parallel or sequentially. Bagging methods, such as Random
Forest and Extra Trees, aggregate predictions from models
trained on bootstrap samples, while boosting methods like
AdaBoost, Gradient Boosting, and XGBoost sequentially
refine model errors. Stacking leverages meta-learners to
combine outputs from diverse base models [6], [7]. In agri-
culture, ensemble methods have been successfully applied
to plant disease classification. [8] proposed an ensemble
classifier combining SqueezeNet, VGG, InceptionV3, and
DeepLoc for fruit disease detection, achieving up to 99%
accuracy. [9] classified tomato leaf diseases using Random
Forest, SVM, and MLP, attaining over 92% accuracy.
Similarly, stacking-based ensemble classifiers have proven
effective in diagnosing fruit tree diseases, with [10] report-
ing a test accuracy of 97.34% on a 10,000-image dataset.
[11] achieved 100% accuracy in cherry classification using
maximum voting over deep models. [12] applied ensemble
deep learning (VGG16, VGG19, Xception) to grape leaf
disease classification, achieving 99.82% accuracy. [13]
utilized ensemble CNNs (EfficientNet, InceptionV3, Mo-
bileNetV2, VGG19) with bagging and weighted averaging
for pear disease detection, demonstrating superior perfor-
mance under real-field conditions. [8] employed hard and
soft voting strategies using five deep models for plant
disease classification, with hard voting nearing 100% ac-
curacy. [14] implemented an optimized ensemble to detect
wheat diseases, achieving classification accuracy up to
98.25%. While ensemble learning is well-explored across
various crops, its application to cocoa pod disease remains
limited. This study builds on the demonstrated success of
ensemble frameworks in agriculture by combining transfer
learning with ensemble strategies to improve the accuracy
and reliability of cocoa pod disease classification.

III. MATERIALS AND METHODS

The focus of this study is to determine the most ef-
fective ensemble learning method for cocoa pod disease
classification by combining fine-tuned transfer learning
models. Considering variations in pod appearance, lighting
conditions, and disease severity, the study evaluates ensem-
ble techniques such as bagging, boosting, and stacking.

Classification performance is measured using standard
quantitative metrics to assess accuracy, robustness, and
practical effectiveness in real-world agricultural settings.

A. Dataset

The dataset used in this study, titled Cacao Disease, was
manually obtained from the Kaggle platform. It comprises
approximately 4,300 images of cocoa pods with a resolu-
tion of 1080 x 1080 pixels, categorized into three classes:
Black Pod Rot, Healthy, and Pod Borer.

To ensure consistency and improve model performance,
the images were pre-processed by resizing them to a
standard resolution of 240 x 240 pixels. In addition,
data augmentation techniques such as random rotation
and horizontal flipping were applied to increase dataset
diversity and enhance the model’s ability to generalize
across different orientations and visual perspectives of
cocoa pods.

Following preprocessing and augmentation, the dataset
was balanced to contain 2,000 images per class, all stored
in . jpg format. Representative samples from each class
are shown in Figures 2, 3, and 4.

Fig. 2: Sample cocoa pod images affected by Pod Borer
disease.

B. Base Models

This study employs established convolutional neural
network (CNN) architectures—VGG16 [15], VGG19 [15],
InceptionV3 [16], Xception [17], ResNet50 [18], and
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Fig. 4: Sample cocoa pod images affected by Black Pod
Rot disease.

ResNet101 [18]—as base learners within the ensemble
framework. These models were selected due to their
proven performance in image classification tasks and their
capacity to learn complex features and visual patterns.
The use of these pre-trained networks aims to enhance
the accuracy and robustness of the cocoa pod disease
classification system by leveraging their transfer learning
capabilities.

C. Ensemble Learning Techniques

In this study, ensemble learning techniques—bagging,
boosting, and stacking—are implemented to improve the
performance of transfer learning models for cocoa pod dis-
ease classification. These methods aim to enhance predic-
tion accuracy and robustness by leveraging multiple base
learners and aggregating their outputs through different
ensemble strategies.

1) Bagging: Bagging (Bootstrap Aggregating) is a par-
allel ensemble technique where multiple base learners are
trained independently on different subsets of the dataset
generated through bootstrapping. This reduces variance
and mitigates overfitting. For each new sample, predictions
from all learners are aggregated using majority voting.

Given a dataset D = {(z1,y1), (T2,¥2)s- -, (Tn,Un)}»
m bootstrap samples D; are generated by random sampling
with replacement. Each base model M; is trained on a
corresponding D;. For a test sample x, the final predicted
class g is obtained via:

[[Mi(z) = ¢] )

where I[-] is the indicator function and C' is the set of
possible classes.

2) Boosting: Boosting is a sequential ensemble method
where each base learner is trained to correct the errors
of its predecessor. The models are trained iteratively, and
their predictions are combined using a weighted majority
scheme. Boosting focuses on difficult samples by assigning
them higher weights in subsequent rounds.

The boosting process follows:

1) Initialize weights w; = % for all training instances.
2) For t =1 to T (number of rounds):

a) Train base learner M, on weighted data.
b) Compute weighted error &;:

v =y w; - T[My(2;) # i) 2
i=1

¢) Compute model weight:

atzlm(l‘gt) 3)
2 Et

d) Update sample weights:

w; — w; - exp (—ony; My (x;)) %)

e) Normalize weights so that > w; = 1.
The final prediction is computed as:

T
j = sign (Z atMt(a:>> )
t=1

3) Stacking: Stacking is a layered ensemble technique
that combines predictions from multiple base models using
a meta-model. Base learners are trained on the original
training data, and their outputs are used as input features
for a higher-level model that learns how to best combine
them.

Let M, Ms,...,M;, be base models. For each
training instance x;, meta-features are generated
as Zz = [Ml(éfz),Mg(.’El),,Mk(l'z)] A  meta-
model My, is then trained wusing the feature
matrix Z = {Z1,Zs,...,Z,} and original labels
Y = {vy1,92,...,yn}. The final prediction for a new
sample z is:

Q: Mmeta([Ml(x),Mg(m),...,Mk(a:)]) (6)

Stacking enables the system to leverage the strengths of
different base models and reduce generalization error.

D. Evaluation Metrics

After fine-tuning and validating the pre-trained models,
their performance is assessed on the test dataset using
standard classification metrics: accuracy, precision, recall,
and Fl-score. These metrics provide a comprehensive
evaluation of the model’s predictive capabilities across all
cocoa pod disease classes.



¢ Accuracy measures the proportion of correctly pre-
dicted instances over the total number of predictions.
It provides an overall indication of model perfor-
mance:

TP+ TN
TP+TN+FP+ FN

Accuracy =

(M

where:

— TP = True Positives
— TN = True Negatives
— FP = False Positives
— FN = False Negatives
o Precision indicates the correctness of positive predic-
tions, i.e., the proportion of predicted positive cases
that are truly positive:

TP
Precision = ——+
recision = - + FP (8)

e Recall (also known as sensitivity) measures the
model’s ability to correctly identify actual positive
cases:

TP

Recall = —————
eca TP FN )

e F1-Score provides a harmonic mean of precision and
recall, balancing both metrics into a single value:

2 - Precision - Recall

F1-S =
core Precision + Recall

(10)

These metrics are especially relevant in multi-class
classification tasks such as cocoa pod disease detection,
where both over- and under-predictions of disease types
can significantly affect model reliability.

IV. EXPERIMENTS
A. Cocoa pod disease classification results

Table 1 and the corresponding confusion matrix in
Figure 5, demonstrate the high performance of the bagging
ensemble with majority voting on the cocoa pod disease
classification task. The model achieved an overall accuracy
of 100%, with only four misclassifications out of 900 test
samples: two healthy misclassified as black pod rot, and
one pod borer each misclassified as black pod rot and
healthy. Despite these minor errors, the precision, recall,
and F1-scores remained at or near 1.00 across all classes,
indicating excellent robustness and class balance.

TABLE I: Classification Report - Bagging (Majority Vot-
ing) Ensemble

precision recall f1-score support
Black Pod Rot  0.99 1.00 1.00 300
Healthy 1.00 0.99 0.99 300
Pod Borer 1.00 0.99 1.00 300
Accuracy 1.00 900
Macro Avg 1.00 1.00 1.00 900
Weighted Avg  1.00 1.00 1.00 900
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Fig. 5: Confusion Matrix - Bagging (Majority Voting)
Ensemble.

Table 2 and the associated confusion matrix in Figure
6, summarize the performance of the Boosting ensemble
method. The model achieved an overall accuracy of 97%,
with class-level Fl-scores of 0.99 for Black Pod Rot, 0.96
for Healthy, and 0.97 for Pod Borer. The confusion matrix
reveals minor misclassifications, including 4 Healthy sam-
ples incorrectly predicted as Black Pod Rot and 16 as Pod
Borer. While Pod Borer was classified perfectly, Healthy
class exhibited the most confusion, slightly reducing recall.
Nonetheless, macro and weighted averages of 0.97 across
all metrics demonstrate the model’s strong and balanced
performance across classes.

TABLE II: Classification Report - Boosting Ensemble

precision recall ft-score support
Black Pod Rot  0.99 0.99 0.99 300
Healthy 0.99 0.93 0.96 300
Pod Borer 0.94 1.00 0.97 300
Accuracy 0.97 900
Macro Avg 0.97 0.97 0.97 900
Weighted Avg  0.97 0.97 0.97 900
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Fig. 6: Confusion Matrix - Boosting Ensemble.

Table 3 and the corresponding confusion matrix in
Figure 7, present the evaluation results of the stacking
ensemble model. Despite achieving a perfect confusion
matrix with all 900 test samples correctly classified, the
class-wise Fl-scores reveal some inconsistencies. While
Black Pod Rot was predicted with high consistency (F1
= 0.93), Healthy had a lower precision (0.83), and Pod
Borer showed a lower recall (0.85). These discrepancies



suggest internal class imbalance or meta-feature misalign-
ment despite perfect final predictions. The model achieved
a macro and weighted average of 0.92 across all metrics,
indicating good but not superior generalization compared
to bagging or boosting.

TABLE III: Classification Report - Stacking Ensemble

precision recall ft-score support
Black Pod Rot  0.96 0.90 0.93 300
Healthy 0.83 0.99 0.90 300
Pod Borer 0.99 0.85 0.92 300
Accuracy 0.92 900
Macro Avg 0.93 0.92 0.92 900
Weighted Avg 0.93 0.92 0.92 900

Confusion Matrix - Meta Model

300

250

- 200

- 150

- 100

2

0

1
Predicted

Fig. 7: Confusion Matrix - Stacking Ensemble.

B. Model performance across ensemble methods

Figure 8 illustrates the training and validation accu-
racy of six pre-trained CNN models (VGG16, VGGI19,
ResNet50, ResNet101, InceptionV3, and Xception) under
three ensemble learning strategies: Bagging, Boosting, and
Stacking. Across all architectures, Bagging consistently
achieved near-perfect validation accuracy (> 0.99), indi-
cating strong generalization and model stability.

Boosting also performed well, although minor drops
were observed in VGG19 and ResNet50, where val-
idation accuracy dipped to 0.98 and 0.97, respec-
tively—suggesting slight overfitting or sensitivity to sam-
ple weighting. Stacking maintained competitive perfor-
mance with validation accuracies closely matching Bag-
ging, particularly for deeper architectures like ResNet101
and Xception.

Overall, Bagging delivered the most consistent perfor-
mance across all models, with minimal variance between
training and validation scores. Boosting showed excellent
training accuracy but slight drops in generalization. Stack-
ing provided robust results, though with more variability
depending on the base architecture. These trends highlight
the superior stability of Bagging for cocoa pod disease
classification tasks, especially when paired with deep pre-
trained models.

Figure 9 compares the overall test set accuracy of the
three ensemble learning methods applied to cocoa pod

disease classification. Bagging achieved a perfect test ac-
curacy of 1.00, clearly outperforming both Boosting (0.97)
and Stacking (0.92). These results confirm Bagging’s
superior generalization ability, as previously observed in
the validation phase (see Figure 8), where it consistently
yielded high and stable performance across all backbone
models.

Boosting maintained strong performance but exhibited
slight degradation, likely due to its sensitivity to noisy
samples or class imbalance, which was reflected in both
validation and test stages. Stacking, despite showing rea-
sonable validation scores, had the lowest test accuracy,
suggesting it may have overfit to the meta-features or
lacked sufficient diversity among base learners.

Together, these findings underscore Bagging as the most
robust and reliable ensemble method for cocoa pod disease
classification in this study.

V. CONCLUSION

This study investigated the effectiveness of combining
transfer learning and ensemble learning techniques for
cocoa pod disease classification. By fine-tuning pre-trained
CNN models—VGG16, VGG19, ResNet50, ResNetl101,
InceptionV3, and Xception—and integrating them into
Bagging, Boosting, and Stacking frameworks, we eval-
vated their performance on a balanced and augmented
dataset containing three disease classes. Among the en-
semble methods, Bagging demonstrated the highest clas-
sification accuracy (100%), followed by Boosting (97%)
and Stacking (92%). The results highlight Bagging’s supe-
rior generalization capabilities and consistent performance
across different architectures. Boosting offered competitive
results but showed sensitivity to class imbalance, while
Stacking introduced variability likely due to the meta-
model’s reliance on base learner outputs.

Overall, the proposed ensemble-based  ap-
proach—particularly when leveraging Bagging—proves
to be an effective and robust solution for automated
cocoa pod disease detection. Future work may
explore lightweight deployment for real-time UAV-
based monitoring and integration of additional visual
features to improve disease differentiation under real-field
conditions.
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