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Accurate path loss modeling in low-power wide-area net-
works (LPWAN) benefits a variety of processes such as network
design and analysis, and supports applications such as localiza-
tion and tracking. Land cover information is indispensable in
accurate path loss modeling; most of the path loss models em-
ployed in LoRa LPWAN studies utilize land cover information
to create a regional description of the propagation environment
(e.g., urban, semi urban, etc.). However, this regional approach
to path loss modeling is incongruent with the anisotropic
characteristic of propagation environments with long radio links
and diverse land covers which is the case in outdoor LPWAN
deployments. Recent LPWAN studies show that using per-link
modeling with detailed land cover data from satellite images
gives more accurate path loss estimates than regional modeling.
Similarly, geographical clustering is another technique that
addresses the issue related to regional modeling by identifying
subregions within the propagation environment and developing
per-subregion path loss model. This study introduces GeoSeg, an
enhanced log-distance path loss model that integrates per-link
modeling with geographical clustering. Developed and evaluated
using an open-access dataset for LoRa, GeoSeg demonstrates
23% improved path loss estimation accuracy compared to the
standard log-distance model.

Index Terms—Path loss model, Low power wide area net-
works, LoRa

I. INTRODUCTION

The number of IoT connected devices has seen steady
growth in recent years with an expected 29 billion con-
nections by 2027 [1]. Outdoor IoT applications need tech-
nologies that transmit data over long distances with minimal
power. LoRa is a long range, low power wireless communica-
tion technology that has become the de facto platform of IoT
[2]. At only 14dBm transmission power, LoRa can transmit
data of up to 25km with line-of-sight [3]. Hundreds of
millions of LoRa devices are connected in various networks
in more than 100 countries [2]; with these devices come a
host of applications that will require or benefit from accurate
path loss modeling.

Many LoRa studies use regional modeling for path loss
estimation [4]-[8]. Regional modeling relies on regional
environment information to obtain a general description of
the whole propagation area. In regional modeling, after cate-
gorizing the propagation environment (e.g., urban, suburban,
rural, etc.), all radio links in the propagation area are modeled
using the same path loss formula or propagation parameters.
For example, the path loss of all the radio links for a suburban
area can be modeled using the semi-urban variant of the
Okumura-Hata model or the log-distance path loss model
with its path loss exponent value adjusted for a suburban
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environment. This regional approach to path loss modeling
results in an isotropic representation of the gateway coverage.

Long radio links, such as LoRa, deployed in a diverse land-
cover environment encounter different propagation environ-
ments depending on the direction of travel [9]. This leads to
a non-isotropic gateway coverage making regional modeling
incompatible. In contrast, a per-link approach can capture
the non-isotropic characteristic of the gateway coverage by
taking into account the diversity of the traversed land covers
of each radio link.

Geographical clustering is another approach that addresses
the issues related to regional models in diverse propagation
environments. This approach partitions the propagation area
into distinct subregions using unsupervised machine learning,
with each subregion assumed to exhibit unique propagation
characteristics. Per-subregion models are then developed to
capture these variations.

The log-distance path loss model is an empirical analytical
model widely used in LoRa studies, offering an environment-
specific parameter: the path loss exponent (7). Calibrating the
log-distance path loss model primarily involves determining
7. Once 7 is known, the total path loss (PL) of a transmission
at a distance (d) can be calculated using (1). Here, PLy
represents the measured path loss at the reference distance
do, and X, ~ N(0,02) denotes the shadowing component
modeled as a zero-mean Gaussian random variable with

variance 2.

PL = PLy+ 10nlog (j) + X, (1)
0

This study introduces GeoSeg, a variant of the log-distance
path loss model that integrates per-link modeling with geo-
graphical clustering. GeoSeg was developed using an open-
access LoRaWAN dataset [10]. To evaluate the performance
of our proposed method, its path loss estimation accuracy
was compared to the standard log distance path loss model.

GeoSeg’s development introduced several methodological
innovations, which are summarized below:

1) Combined per-link modeling with geographical clus-
tering to develop a per-link variant of the log-distance
path loss model. This variant achieves improved path
loss estimation accuracy compared to the standard log-
distance path loss model.

2) Developed a context-aware embedding process that
characterizes the 2D propagation environment between
transceivers, incorporating land cover types, their spa-
tial sequence, and positions relative to line-of-sight.



3) Modified a Hidden Markov Model (HMM)-based tech-
nique for variable-length sequence clustering, to handle
large-scale dataset processing.

4) Introduced a calibration process for the log-distance
path loss model that is easily integrable to preexisting
LPWAN deployments and/or datasets.

II. RELATED WORK
A. Per-link Modeling

Recent LoRa-based studies have adopted two main ap-
proaches for per-link path loss estimation: creating modified
per-link versions of existing propagation models [9], [11],
or employing neural networks trained on per-link data [12].
All these approaches utilize multispectral satellite images to
capture a more granular description of radio links.

One study proposed a per-link variant of the Okumura-
Hata model [9], which was selected for its adaptable formu-
lations for different environments (e.g., urban, semi-urban,
open space). Satellite imagery was used to identify the
dominant land cover along each radio link, allowing classi-
fication of the environment. The appropriate Okumura-Hata
formulation was then applied to estimate path loss.

Another method, SateLoc, is a per-link variant of the
log-distance path loss model that uses segmented links to
compute total path loss [11]. This method represents the
radio link as a straight line connecting the target node and
the gateway. By leveraging land cover classification data,
adjacent cells traversed by the radio link are grouped into
segments based on similarity. Path loss is then computed
sequentially for each segment, starting from the segment
closest to the target node. SateLoc provides finer land cover
granularity than the per-link Okumura-Hata model. However,
SateLoc’s representation of radio links as single-pixel-wide
lines fails to account for environmental attenuation from
surrounding areas. Additionally, its path loss estimates are
highly sensitive to land cover misclassifications along these
linear paths [12].

Unlike SateLoc, DeepLoRa [12] represents a radio link
as a 2D rectangular region rather than a line. It models
the propagation path as a continuous series of micro-links
spanning from the target node to the base station, forming
a rectangular area. This approach more effectively captures
signal attenuation from surrounding land cover [12]. While
DeepLoRa achieves higher accuracy than Satel.oc, its neural
network-based design requires extensive measurement data
for training.

B. Geographical Clustering

The site-specific modeling employed through geographical
clustering can lead to improved path loss estimation accuracy,
as demonstrated by a study conducted on an LTE network
[13]. Clustering algorithms rely on input feature vectors that
encode propagation region information between transceivers.
Therefore, a critical aspect of geographical clustering is
how the propagation region is represented and transformed
into meaningful feature vectors for clustering. Some studies
used fix-sized rectangular regions around the transmitter and

receiver to capture the effect of built structures in the propa-
gation environment [14]-[17]. These rectangular regions are
then rotated depending on the Tx-Rx direction. However,
since these regions are fixed in size, the propagation represen-
tation does not fully cover the entire link region between the
target node and the base station. A representation similar to
that of DeepLoRa is desirable—i.e., a 2D region connecting
the transceivers. However, DeepLoRa’s embedding method
does not account for the spatial arrangement of land covers
relative to the line of sight within the link region.

C. Estimation of the Path Loss Exponent (1)

Possible values of 7 are available in the literature [18].
However, except for the free-space scenario, the path loss
exponent values for different environments are typically
provided as ranges. Therefore, site-specific model calibration
remains necessary for improved model performance. Field
measurements are usually required prior to the actual estima-
tion of n (e.g., using Maximum Likelihood Estimation). The
data collection methods used in previous studies require the
transceivers to be co-located within the same land cover type
area or environment for which 7 is being estimated [19][11].
This requirement may not be easily implementable with
existing deployments or datasets where such conditions are
not met.

In summary, a desirable path loss estimation model should:

1) Employ per-link modeling.

2) Incorporate the 2D spatial information of land covers

into radio link calculations.

3) Feature a calibration process that’s easily integrable

with existing LPWAN deployments or datasets.

Our proposed method, GeoSeg, uses a segmented log-
distance path loss model, with each segment corresponding
to a traversed subregion. This approach embeds 2D spatial
information into each segment of the radio link. Additionally,
this study utilizes a per-subregion calibration process that
does not require co-locating the transmitter and receiver
within the same subregion. We hypothesize that this prop-
agation model provides more accurate path loss estimations
than the standard log-distance model in environments with
diverse land cover types.

III. METHODOLOGY

The development of the proposed path loss model,
GeoSeg, involved three main processes: land cover classifi-
cation, geographical clustering, and model calibration. Multi-
spectral satellite imagery and GIS data were used for land
cover classification. For geographical clustering, this study
developed an embedding method that generated features from
each radio link’s propagation region and applied a Hidden
Markov Model (HMM)-based clustering approach. Finally,
the model calibration step involved simultaneously deter-
mining the path loss exponent for each subregion without
requiring the transmitter and receiver to be co-located within
the same subregion of interest.



A. Land Cover Classification

The area of study is located in Antwerp, Belgium, where
the dataset for the path loss model calibration was collected
[10]. It is a 4.3 km x 2.7 km region bounded by the lower-left
and upper-right coordinates (51.192646°N and 4.425558°E)
and (51.231342°N and 4.425558°E), respectively. The area
comprises five main land cover types: buildings, trees, open
fields, roads, and water. The multi-spectral image was ob-
tained from the Copernicus Sentinel-2 database and filtered
for the period from January 1, 2019, to December 31, 2019.
The bands used for the classification were B2, B3, B4,
BS5, B6, B7, and B8. Additionally, the NDVI (Normalized
Difference Vegetation Index) was derived from the NIR and
red bands (i.e., B8 and B4, respectively).

Google Earth Engine (GEE) was used for land cover
classification. Training and validation cells were manually
labeled, with the following distribution: 552 buildings, 513
trees, 504 fields, 517 roads, and 520 water, totaling 2,606 data
points. Of these, 80% of the dataset was used for training,
and the remaining 20% was reserved for validation. GEE
offers four built-in classifiers: random forest, Naive Bayes,
CART, and SVM. Among these, the random forest classifier
achieved the highest overall classification accuracy of 83%
for this study’s dataset. The resulting land cover classification
map has a resolution of 10 m x 10 m, matching the cell
resolution of the multi-spectral image. This process gener-
ated a dataset comprising 181,451 entries, with each entry
containing longitude, latitude, and land cover classification
information.

B. Geographical Clustering

1) Embedding

The embedding process transformed each link region
(width w and length n) into a vector v € R"™". These vectors
served as inputs for the clustering algorithm. To account for
the influence of land cover type and its position relative to
the line of sight of the link region, this study assigned a
value w to each cell in the propagation region. The value
of w depends on both the land cover type ¢ and its relative
position A with respect to the link region’s line of sight.
The value of A depends on the width w of the link region
and its length n, both are expressed in terms of cell count.
The value of w and A for a cell located in the i-th row
and j-th column of the propagation region was computed
using (2) and (3) respectively, where ¢ € {0,1,...,n — 1}

and j € {0,1,...,w — 1}.
wij = AijCij 2
e 2wt 3] o

For this study, the land cover types field, road, and water
were collectively categorized as open land covers and has
¢ = 0. Buildings and trees have ¢ = 2 and ¢ = 1 respectively.
Finally, the k-th element of the feature vector v[k] = w;;
where k = wi+j. Fig. 1 shows a sample embedding process
of a propagation region with n =2 and w = 7.
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Fig. 1. Propagation region with w = 7 and n = 2. (a) Raw, unweighted
cells containing only land cover type information. (b) Weighted cells after
applying weight assignment formula. (c) Flattened propagation region matrix
to create feature vector.

2) Clustering

Due to the variable lengths of propagation regions, their
feature vectors exhibited differing dimensionalities. This
necessitated the use of a clustering method capable of
processing variable-length inputs—a common challenge in
sequential data analysis [20]. To address this challenge,
this study applied a Hidden Markov Model (HMM) based
clustering method.

Consider a dataset D with N sequences {Si,..., Sy} of
varying lengths. The objective is to discover the inherent
clustering that partitions these sequences into K distinct
groups. The assumption is that each distinct group is gen-
erated by its own HMM. For this work, a clustering process
[21] was modified to reduce the computational burden for
large datasets. The modified clustering procedure proceeds
as follows:

1) Randomly sample n sequences from the dataset D to
create a reduced-sized dataset d of size n.

2) Fit an HMM m; for each sequence s; € d, 1 <7 < n.

3) For each fitted model m; and sequence s;, evaluate
the log-likelihood L(s;|m;), 1 < i,j < n. The log-
likelihoods are used to define pairwise distances of
sequence s; and s; [21].

4) Create a distance matrix A. The elements a;; of A are
equal to £ (L(s;|m;) + L(s;lm;)).

5) Apply a hierarchical clustering algorithm to generate
K clusters from the distance matrix A.

6) Having clustered the sequences into K groups, fit K
HMMs {M;, ..., My}, one to each cluster.

7) For each sequence S; € D, assign its cluster by solving
k = argmax L(S;|My).

My,

C. Model calibration per subregion

1) Field measurement

Field measurement data were obtained from an open-
access LoRaWAN dataset collected in an urban area in
Antwerp, Belgium [10]. Only a subset of the dataset was
used, selected by focusing on a gateway located in an



area with heterogeneous land cover. The reference ID of
the gateway used for this study is FFO1753E located near
51.1974874°N and 4.406706°E. For simplicity, only trans-
missions with spreading factor 7 (SF7) were included, as
these were the most numerous. Only the relevant metadata
were retained as features, namely longitude and latitude
coordinates, and RSSI values. The distance between each
transmission location and the gateway was derived and added
as a feature. Local coordinates x and y were also added as
features. Finally, each transmission location was assigned to
the cluster of the nearest cell in the clustering map. This
initial feature selection process resulted in a new dataset
comprising 22,912 instances and the following features:
latitude, longitude, x, y, RSSI, distance, and cluster.

RSSI measurements are inherently noisy; consequently,
data preprocessing was applied to mitigate noise effects. The
filtered dataset was derived from the original dataset through
local averaging.

Let X = {x1, X2, ..., X, } be the original set of datapoints
where each x; represents a feature vector.

For each datapoint x;, using the longitude and latitude
information of each dataset entry, identify the set of neighbor
datapoints \; whose elements are z; € X within a radius r:

Ni={x; e X||x; — x| <r} 4

An outlier is removed and is identified when it has less
than N neighbors:
Wil <N (5)

For datapoints with at least N neighbors, their feature
values are updated by taking the average values of all their
neighbors.

x=5p 2% ©)
v X E./\/'i

Finally, a filtered dataset X’ is created using the updated
values. In this study, we used » = 50m and N = 30.
For simplicity, we did not explore alternative values for the
radius and neighbor count. Future work could investigate the
potential impact of varying these parameters on path loss
estimation accuracy.

2) Formulation of the problem

The log-distance path loss model (1) served as the founda-
tional model for this study. This empirical analytical model
is the most widely adopted path loss model in LoRa studies,
offering environment-specific parameters that can be cali-
brated. Calibrating the log-distance path loss model involves,
primarily, the determination of the path loss exponent (7). In
(1), only one n needs to be identified since it is assumed
that the radio link traverses a homogeneous propagation
environment.

GeoSeg represents the radio link between the transmitter
and receiver as a series of segments where each segment is
a subregion. This variation in the representation of the radio
link entails a modification in the formulation of the standard
log distance path loss model. Fig. 2a illustrates a simplified
scenario that was used to formulate the problem.

radio link
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Fig. 2. Simple scenario where the propagation region traverses two
subregions.
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Fig. 3. A more complicated case where subregions are traversed multiple
times.

3) Estimating n

The simple scenario presented in Fig. 2 has two segments
(each segment representing a traversed subregion) and the
PL, is simply:

d d
PL, = 10n4log (d1> + 1075 log (j) (7)
0 1

A more complicated case is shown in Fig. 3 where there

are four segments with repeating clusters. In In this case PL,,
becomes:

d d
PL, =10n4 log <d1> + 10np log (d2) +
0 1

d d
-+ 10n4 log (dz) + 10np log (cli) 8)

did dod
—10n4log (d;dz) 4 10ns log (dd)

Eq. 9 is the general formulation for PL, that has
n segments with M clusters in C = {c1,c¢2,...,Car}-
Dy, Ds,...,Dys are distance ratio features computed for
each transmission by tracing the radio link from the trans-
mitter to the gateway using Bresenham’s line algorithm and
analyzing how it traverses different geographical clusters. For
each segment where the cluster changes, the distance ratio is



updated relative to a reference distance dgy, which is then set
to the current distance within the same cluster.

d d
PL, =10n.cc log (d1> + 107.¢cc log <d2) 4+
0 1

dy
- 4+ 10n.cc log (d 1) )

=107,, log (D1) 4+ 101, log (D2) + - - -
<o+ 10n,,, log (Dar)

Once the distance ratios are calculated, estimating the path
loss exponent for each subregion becomes straightforward.
Equation (9) can be rewritten as a linear regression model
y = X B +¢, where € is the residual vector. Given a training
dataset of size p, the values of y, 3, and X are:

1

PL%g; Tew

PLX Nes

y=| . |B=] .

pLY Meas
10log(D'Y)  10log(DSY) -+ 10log(D{Y)
10log(D{*) 10log(DS”) -~ 10log(D}))
101og(D{”)  10log(D) 101og(D®)

Finally the estimates for the path loss exponents (ﬁ) are
obtained using ordinary least squares (11).

B=(XTXx)'XxTy (11)

This segmented formulation of PL, enables simultaneous
estimation of the path loss exponent for each subregion.
Notably, this approach not only eliminates the requirement
for co-locating the gateway and transmitter within the same
subregion but also removes the need for transmitters to be
located within the subregion itself. As long as radio links
between the gateway and transmitters traverse the subregion,
its path loss exponent can be estimated.

4) Validation

Referring to Fig. 2b and Fig. 3, the total path loss PL
is the sum of two path loss components: PLy and PL,,
where PL, represents the path loss from Prg to P,.. PL,
can be directly computed since P, is explicitly available in
the dataset, and Prg is the received power at the designated
reference distance dg. In the dataset used, dy = 27.39 m and
its corresponding Prg = —85.87 dBm. On the other hand,
PLg requires knowledge of the transmit power P;, which is
not provided in the dataset. This study focuses exclusively
on estimating PL,. Therefore, the ground truth values used
for the validation process are given by:

PL, = Pro— P, (12)

The metric used for comparing the performances is the
mean absolute error (MAE). Cross-validation was performed
by training and validating the model using a randomly
sampled 80-20 train-test split, repeating this process 30

times. The average MAE value was then recorded. This
procedure was carried out for different number of clusters
(M € {1,2,3,4}). To maintain cluster distribution integrity,
stratified sampling was also employed.

IV. RESULTS AND DISCUSSION
A. Prediction accuracy

The relationship between the number of clusters and path
loss estimation accuracy is shown in Fig. 4. A single cluster
(M = 1) treats the entire study area as a homogeneous
propagation region, which is equivalent to the standard
log-distance path loss model. As observed, adding clusters
improves path loss estimation accuracy but with M > 4, the
MAE increases. In this study, optimal number of clusters is
M = 4.

Fig. 5 compares the performance of GeoSeg with the
standard log-distance path loss model across all clusters. For
this comparison the GeoSeg model that uses four clusters
(M = 4) was used. GeoSeg demonstrates improved estima-
tion accuracy for all clusters except cluster 2, but the perfor-
mance difference in cluster 2 is less pronounced compared to
other clusters. To evaluate whether the estimation errors of
the two models are significantly different, hypothesis testing
was conducted. Wilcoxon signed-rank test was employed and
the computed p-value (p << 0.05) indicates a significant
difference.

A direct comparison of prediction accuracy between
GeoSeg and other per-link methods—specifically SateLoc
and the per-link Okumura-Hata model—was not performed
in this study. These methods require data collection tech-
niques or parameters that are either incompatible with or
missing from the dataset used. For instance, SateLoc requires
transceivers to be co-located within the same land cover
type to estimate path loss exponents, which does not align
with the current deployment and dataset. Similarly, the per-
link Okumura-Hata model needs system parameters that
were not available in the dataset. Using estimated values or
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Fig. 4. Relationship between the number of clusters and path loss prediction
accuracy.
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Fig. 5. Relationship between the number of clusters and path loss prediction
accuracy.

adjusting the methods to fit the available data would reduce
the reliability of the comparison. Therefore, GeoSeg was
evaluated only against the standard long-distance path loss
model. To enable a more thorough comparison, future work
should collect data following the methodologies of these
other studies and include the necessary system parameters.

V. CONCLUSION

It was shown that the diversity of land covers in an LP-
WAN propagation environment necessitates a more granular
approach to path loss modeling. Previous studies have used
per-link modeling and geographical clustering techniques
to improve the path loss estimation accuracy compared
to regional models. This study developed a method that
combines these two techniques to create an enhanced log-
distance path loss model. Using real-world data, the proposed
method achieved a 23% improvement in the MAE of path
loss estimates compared to the standard log-distance path loss
model.
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