
Design and Implementation of a Real-Time
Acoustic Feature Visualization System on Raspberry Pi Platform

Utilizing Fixed-Point FPGA-Based Mel Spectrum Extraction

Chenyu ZHAO†, Hiroshi TSUTSUI††, and Takeo OHGANE††
† Graduate School of Information Science and Technology, Hokkaido University

†† Faculty of Information Science and Technology, Hokkaido University

Abstract—This paper presents the design and implementation
of a real-time acoustic feature visualization system on the
Raspberry Pi platform, incorporating a fixed-point FPGA-
based mel spectrum extraction module. The system supports
efficient computation of key audio features, particularly the mel
spectra, log-mel spectra, and mel-frequency cepstral coefficients
(MFCCs), which are computed per frame and widely used
in audio classification and acoustic analysis. By offloading
mel spectrum extraction to an FPGA and utilizing fixed-point
arithmetic, the system achieves low-latency and energy-efficient
signal processing, enabling real-time performance on resource-
constrained hardware. The Raspberry Pi is responsible for data
acquisition and MFCC calculation from the FPGA-generated
mel spectra. Additionally, it performs graphical rendering. This
configuration forms a low-cost and low-power platform for real-
time acoustic applications such as industrial anomaly detection,
environmental sound monitoring, and other edge-based acoustic
intelligence tasks. Implementation results demonstrate that the
system provides accurate and responsive visualization of audio
features.

Index Terms—FPGA, MFCC, Audio Processing, Fixed-Point
Arithmetic, Embedded Systems.

I. INTRODUCTION

Audio signal processing has become a cornerstone of
numerous modern technologies, playing an essential role in
a wide range of applications. From speech recognition and
audio compression to enhancement techniques, it supports
vital functions in telecommunications, multimedia systems,
and assistive technologies. Efficient processing and analysis
of audio signals are critical for enabling advanced capabilities
such as voice interaction, immersive sound experiences, and
adaptive noise cancellation.

As the field of audio processing continues to progress,
its influence extends into industrial domains, including ma-
chinery condition monitoring, fault diagnosis, and predictive
maintenance. Techniques such as acoustic anomaly detection
are increasingly employed to identify abnormal sounds from
engines, motors, or other equipment, enabling early detec-
tion of mechanical failures. These advancements enhance
operational safety, reduce downtime, and contribute to more
efficient and intelligent industrial systems.

This paper presents a real-time speech feature visualization
system built on a Raspberry Pi and field-programmable gate
array (FPGA) platform. The system is capable of capturing
audio input, extracting mel or log-mel spectrogram and mel-
frequency cepstral coefficient (MFCC) features in real time,
and displaying the results through a user-friendly interface.
By integrating fixed-point arithmetic in the feature extraction

Audio
signal

Pre-emphasis Framing
(20 to 40 ms)

Windowing
(Hanning window)

FFTMel filter bankLogDCT
MFCC Mel

spectrum
Log-mel

spectrum
Power

spectrum

Fig. 1. Calculation flow of acoustic features: mel or log-mel spectrograms
and mel-frequency cepstral coefficients (MFCC).

process, the system maintains reliable performance while
ensuring compatibility with embedded hardware constraints.
The overall design focuses on functional completeness, real-
time responsiveness, and adaptability to various application
scenarios such as voice interaction or acoustic monitoring.

The remainder of this paper is structured as follows.
Sec. II outlines the principles of the MFCC calculation,
while Sec. III elaborates on the system architecture and its
implementation. Sec. IV presents the functional verification
of the complete system, demonstrating real-time processing
and visualization capabilities. Experimental results highlight
improvements in processing speed and reliability, affirming
the FPGA-based approach as a robust solution for real-time
audio processing. Finally, Sec. V concludes the paper.

II. MEL-FREQUENCY CEPSTRAL COEFFICIENTS
CALCULATION OVERVIEW

MFCCs are among the most widely adopted features in
speech and audio processing [1]. MFCCs capture the short-
term spectral structure of an audio signal in a form that
aligns closely with human auditory perception, making them
well-suited for tasks such as speech recognition, speaker
identification, audio classification.

The MFCC extraction process consists of a series of
transformations that convert a raw time-domain audio sig-
nal into a compact sequence of de-correlated coefficients.
Fig. 1 illustrates the full MFCC calculation pipeline, which
includes pre-emphasis, framing, windowing, frequency trans-
formation, mel-filtering, logarithmic scaling, and a final de-
correlation step using the discrete cosine transform (DCT).

A. Mel spectrum

Since audio signals are non-stationary by nature, the signal
is processed in short overlapping frames, within which the
signal can be considered approximately stationary. Prior to
framing, a pre-emphasis filter is applied to amplify the high-

979-8-3315-6946-4/25/$31.00 ©2025 IEEE

2025 International Symposium on Multimedia and Communications Technology (ISMAC)

0 128 256 384 512
Freq. (FFT index) k

0.000

0.010

M=32
N=1024

Fig. 2. Mel filter bank (f = 8 kHz, 32 filters, normalized)

frequency content and balance the spectral tilt introduced by
the vocal tract:

y(t) = x(t)− αx(t− 1), (1)

where α is typically between 0.95 and 0.98.
The signal is then segmented into overlapping frames, each

multiplied by a window function to reduce spectral leakage
at the frame boundaries.

Each windowed frame is transformed into the frequency
domain using the fast Fourier transform (FFT). Let N be
the number of FFT points and fs be the sampling frequency.
The width of the FFT bin is ∆f = fs/N , and the frequency
corresponding to each FFT bin is k∆f , where 0 ≤ k ≤ N/2.
Since only the power of frequency components is needed
for MFCC, the magnitude spectrum is squared to obtain the
power spectrum Pk corresponding to the k-th FFT bin.

A key step in MFCC calculation is the application of a
mel filter bank. These filters simulate the human auditory
system’s nonlinear sensitivity to different frequency ranges.
The mel scale [2] maps the linear frequency f in Hz to a
perceived pitch scale FM in mels:

FM = 2595 log10

(
1 +

f

700

)
, (2)

f = 700
(
10FM/2595 − 1

)
. (3)

Based on this scale, a set of overlapping triangular filters
is constructed, typically 20 to 40 in number, with 26 being
a standard configuration. These filters are spaced uniformly
in the mel scale and non-uniformly in the linear frequency
domain [3]. Let M be the number of filters. Each triangular
filter Hm,k, 1 ≤ m ≤ M , covers a specific range of
frequencies and is defined as:

Hm,k =


0 if k∆f < fm−1 or fm+1 < k∆f,

k∆f − fm−1

fm − fm−1
if fm−1 ≤ k∆f < fm,

fm+1 − k∆f

fm+1 − fm
if fm ≤ k∆f ≤ fm+1,

(4)

where fm is the center frequency of the m-th filter, fm−1

and fm+1 are the center frequencies of the adjacent filters,
f0 = 0, and fM+1 = (N/2)∆f = fs/2.

Fig. 2 shows an example of mel filter bank covering up to
8 kHz with 32 filters and 1,024 points frame length.

By applying M filters to the power spectrum, we obtain
coefficients Gm, each corresponding to the energy within a
specific mel frequency band. The coefficients are calculated
as:

Gm =

N/2∑
k=0

Hm,kPk. (5)

These coefficients Gm collectively form what is known as the
mel spectrum, which captures the energy distribution across
perceptually motivated frequency bands, as shown in Fig. 1.

This representation plays an important role in tasks re-
quiring high spectral resolution, such as speech or music
analysis, although its large data volume may limit its use
and transmission in resource-constrained environments.

B. Log-mel spectrum

After filter bank energies are obtained, a logarithmic oper-
ation is applied to compress the dynamic range and align with
the human auditory system’s logarithmic perception of sound
intensity. For each mel filter output Gm, the logarithmic
transformation is applied as:

LogMelm = 10 log(Gm), (6)

which the LogMelm is called log-mel spectrum shown in
Fig. 1. This transformation compresses the dynamic range
of Gm, preventing high-energy bands from dominating and
ensuring a balanced feature representation.

The log-mel spectrum offers a favorable trade-off between
feature expressiveness and compactness, which makes it a
common choice in deep learning applications such as speech
recognition.

C. Mel-frequency cepstral coefficients

To get the MFCC, the final step involves applying the
discrete cosine transform (DCT) to the log-mel spectrum.
The DCT is essential for transforming the highly correlated
coefficients of the log-mel spectrum into a set of de-correlated
coefficients. The correlation in the log-mel spectrum can pose
challenges for certain machine learning algorithms, as it may
lead to redundancy in the feature space or reduce the model’s
ability to generalize effectively. By applying the DCT, we
de-correlate these coefficients, enabling more robust feature
representation for downstream tasks.

In this paper, we adopt the DCT-II variant, which is widely
used in MFCC computation. The DCT-II is mathematically
defined as:

MFCCu = cu

M∑
m=1

LogMelm cos

(
(m− 0.5)π

M
u

)
, (7)

cu =

β
√

1
M if u = 0,

β
√

2
M otherwise,

(8)

where MFCCu, 0 ≤ u ≤ M − 1, represents the result of the
DCT-II for the u-th coefficient, and LogMelm, 1 ≤ m ≤ M ,
is the m-th input coefficient from the log-mel spectrum.
The term cu is a scaling coefficient that ensures proper
normalization of the DCT results. The scaling factor β adjusts
the magnitude of the DCT results. In this paper, we use
β = 0.5.

The first 12 or 13 coefficients are typically retained,
forming the MFCC vector used for downstream tasks. These
coefficients provide a compact, decorrelated, and perceptually
meaningful representation of the original signal. The resulting
MFCCs offer a compact, low-dimensional feature set ideal

MEMS Mic

Config

UART

FPGA

Mel Spectrum

Extractor

Encoder

Raspberry Pi

Config UART

Mel Spectrum

Display

NN

Decoder

Log DCT

Config

GUI

Wireless

(Optional)

Fig. 3. System architecture

I2S
Controller

Fast Fourier
Transform

Hanning
Window

Pre-Emphasis
Buffer

Framer

Configuration

Configuration

Configuration

Peripheral
Interface

In
te

r-
c

o
n

n
e

c
to

r

Overlap
Data

Counter

Address

Mel
Filter Banks

Buffer
Power

Spectrum

MEMS Mic

Mic Clk

System Clk

UART Clk

Clock
Management

Multiplier

Fig. 4. Mel spectrum extractor

for real-time speech or acoustic event detection systems with
traditional machine learning.

III. PROPOSED SYSTEM

The proposed real-time speech feature visualization system
consists of two main components: an FPGA and a Raspberry
Pi, as shown in Fig. 3. The system is designed to capture,
process, and visualize speech features in real time, with the
FPGA handling time-critical signal processing tasks and the
Raspberry Pi managing data communication, post-processing,
and user interaction.

To ensure both efficiency and flexibility, the design sepa-
rates low-level feature extraction from higher-level control
and visualization. The mel spectrum extraction is imple-
mented on the FPGA, based on our prior accelerator de-
sign [4], with adaptations made for fixed-point computa-
tion, real-time streaming, and embedded deployment. The
Raspberry Pi serves as a host platform to receive data from
the FPGA, perform optional processing such as logarithmic
compression and DCT, and render the features in real time.

Header PayloadSync Index
0xFF Index Byte 3 Byte 2 Byte 1 Byte 1

Fig. 5. Custom UART protocol frame format. This frame corresponds one
feature value, such as Gm. A feature frame is defined as a set of consecutive
frames that have the same index.

A. FPGA-based feature extraction module

The detailed architecture of the mel spectrum extractor is
shown in Fig. 4 [4]. The FPGA is responsible for capturing
audio data from an I2S digital microphone, performing mel
spectrum extraction, and transmitting intermediate results
over a universal asynchronous receiver-transmitter (UART)
interface.

The I2S receiver module on the FPGA samples incoming
audio at 16 kHz and buffers the signal into overlapping frames
of 512 samples with 50 % overlap which generates one frame
every 16 ms. Each frame is windowed using a Hanning
function before applying the FFT. The power spectrum is
computed and passed through mel-scale triangular filters to
extract perceptually meaningful features. In this implemen-
tation, 26 filters are used.

To reduce transmission bandwidth and maximize flexibil-
ity, only the mel-filtered energy values are transmitted via
UART. Rather than sending raw binary streams, a lightweight
custom protocol was developed on top of UART to ensure
reliable and structured communication between the FPGA
and Raspberry Pi, as shown in Fig. 5. This protocol defines
a data frame structure including a 2-byte header with a
synchronization byte 0xFF and an index byte field, and
payload (feature value). A feature frame is defined as a set of
consecutive frames that have the same index. This allows the
Raspberry Pi to efficiently find the start of feature frames.

While the current implementation does not include a
checksum field, the protocol can be readily extended to
incorporate error detection mechanisms if required in more
noise-prone environments. The format of the custom UART
protocol is illustrated in Fig. 5.

All internal computations on the FPGA are performed
using fixed-point arithmetic to minimize resource usage. The
system uses a Q16.16 fixed-point format, balancing range and
precision, which has been evaluated in our prior work.

B. Raspberry Pi visualization and control module

The Raspberry Pi functions as the system’s upper-layer
processing unit, handling real-time visualization, optional
post-processing, and interface operations. It receives mel-
filtered energy data from the FPGA via UART and renders it
as a rolling spectrogram display for monitoring and analysis.
The hardware specifications of the Raspberry Pi 4B used in
this system are listed in Table I [5].

Early software prototypes were developed using Python
and the librosa library [6] due to its rich set of signal
processing tools. However, during testing it became clear that
the execution speed and rendering performance of Python
were insufficient for real-time visualization on embedded
hardware. As a result, the final implementation was migrated
to C, allowing more efficient memory management and
faster rendering. The C-based application processes incoming

TABLE I
RASPBERRY PI 4B SPECIFICATIONS [5]

Component Specification
Processor Broadcom BCM2711, Quad-core Cortex-A72 @1.5 GHz
Memory 4 GB LPDDR4-3200 SDRAM
Storage microSD (up to 256 GB, OS+data)
Interfaces 2× micro-HDMI, 4× USB (2×3.0, 2×2.0), GPIO, UART
Networking Gigabit Ethernet, 802.11ac Wi-Fi, Bluetooth 5.0
OS Support Raspberry Pi OS (Linux), supports C/C++, Python

UART data, applies logarithmic compression and optional
DCT, and updates the display in near real-time.

In addition to visualization, the system architecture re-
serves the capability for bi-directional communication be-
tween the Raspberry Pi and the FPGA. Although not fully
implemented in this version, a UART-based control protocol
interface is in place, enabling the future addition of runtime
configuration of FPGA parameters such as sampling rate,
frame length, and mel filter settings. This would allow users
to adjust MFCC extraction parameters dynamically, without
requiring hardware resynthesis.

Moreover, due to the available computational resources of
the Raspberry Pi 4B, the platform supports lightweight neural
network inference (NNI). This enables potential applications
such as basic voice command recognition or acoustic event
classification.

In scenarios requiring remote monitoring or distributed
data aggregation, the system also supports optional wireless
data transmission. Leveraging the built-in Wi-Fi interface of
the Raspberry Pi 4B, multiple types of data can be selec-
tively uploaded to remote servers or cloud platforms. These
include real-time mel spectrogram features, current MFCC
processing configurations, and inference results produced by
lightweight NN models. This enables centralized monitoring,
data logging, or cloud-based post-analysis without compro-
mising local real-time performance.

Such functionality extends the system’s applicability to
Internet of Things (IoT) and edge-AI deployment scenarios,
where on-device feature extraction is combined with cloud-
based storage, analytics, or model retraining pipelines.

IV. SYSTEM IMPLEMENTATION RESULTS

To evaluate the functionality and performance of the
proposed system, a series of experiments were conducted
focusing on real-time operation, feature correctness, and
stability. Both the FPGA-based feature extraction module and
the Raspberry Pi-based visualization component were tested
in an integrated environment using actual audio input.

The correctness of the mel filter outputs and the functional
behavior of the FPGA design were both verified in our previ-
ous work [4], where comparisons against software reference
implementations demonstrated high accuracy. In this work,
we focus on real-time performance, system integration with
the Raspberry Pi, and end-to-end data transmission.

A. UART baud rate

The FPGA generates one feature frame every 16 ms, corre-
sponding to 62.5 frames per second. Each frame contains 26
mel filter outputs, each represented as a 32-bit (4-byte) fixed-
point value. In the custom UART protocol, each individual

Audio In (I2S)

FPGA

UART (Mel spectrum)

Paspberry Pi

Time

Freq.

Power

MEMS MicMEMS Mic

Power

Power

Fig. 6. Real-time mel spectrogram displayed on Raspberry Pi

data item (i.e., each mel filter value) is preceded by a 2-
byte header as shown in Fig. 5. The total data per frame is
calculated as:

26× (2 + 4) = 156 bytes. (9)

Given the frame rate of 62.5 frames per second, the resulting
data transmission rate is:

156× 62.5 = 9,750 bytes/sec. (10)

Using UART in 8-N-1 format, each byte requires 10 bits for
transmission. Therefore, the minimum required baud rate is:

9,750 × 10 = 97,500 bps. (11)

To ensure stable and lossless real-time communication, the
system operates at a standard UART baud rate of 115,200 bps.
This provides sufficient margin for timing variations and con-
firms that the bandwidth is adequate to support uninterrupted
transmission of mel spectrum data.

B. Raspberry Pi visualization implementation

On the Raspberry Pi, the C-based software correctly parsed
the incoming data stream and rendered a rolling spectrogram
display. Although the exact latency from audio input to visu-
alization update was not quantitatively measured, the system
was observed to respond very rapidly to acoustic events.
Visual updates appeared near-instantaneous to the user, in-
dicating that the system meets real-time responsiveness re-
quirements in practice. Acoustic changes produced clear and
timely shifts in the displayed mel patterns, demonstrating the
system’s ability to track spectral dynamics accurately and
intuitively.

Fig. 6 shows a photo of the spectrogram displayed on the
Raspberry Pi when processing an acoustic digit sequence.
Fig. 7 presents four screenshots of the resulting log-mel
spectrograms corresponding to input frequencies of 220, 440,
2,200, and 4,400 Hz.

The results clearly demonstrate that at lower input fre-
quencies like 220 Hz and 440 Hz, the energy is distributed
more evenly across the mel filter banks. In contrast, at
higher frequencies such as 2,200 Hz and 4,400 Hz, the energy
becomes increasingly concentrated in the higher-dimensional
mel bands. This reflects the mel scale’s non-linear frequency

f = 220Hz f = 440Hz

f = 2,200 Hz f = 4,400 Hz
Fig. 7. Real-time mel spectrogram displayed on Raspberry Pi

resolution and the system’s ability to accurately reflect
frequency-specific energy distributions.

These results demonstrate that the FPGA-based MFCC
system can reliably process input signals in real time. The
experiment confirms its effectiveness and suitability for low-
latency acoustic analysis on embedded hardware.

These experimental results confirm that the system
achieves real-time mel spectrogram extraction and display
with high reliability, making it suitable for embedded acoustic
analysis and interactive audio applications.

V. CONCLUSION

This paper presented a real-time speech feature visualiza-
tion system implemented on a hybrid platform combining
an FPGA and a Raspberry Pi. The FPGA was responsible
for efficient mel spectrum extraction using fixed-point arith-
metic, while the Raspberry Pi handled data reception, post-
processing, visualization, and potential control feedback.

To facilitate reliable and structured communication be-
tween the FPGA and Raspberry Pi, a lightweight custom
UART protocol was implemented. The system’s design and
optimization enabled accurate, real-time visualization of
acoustic features, capturing speech and environmental sounds
with clear and timely spectrogram updates.

The Raspberry Pi software, migrated from an initial Python
prototype to a more efficient C implementation, successfully
rendered spectrograms in real time. Additionally, the platform
was shown to support lightweight neural network inference
and offers extensibility for wireless data transmission to
remote servers, enabling applications in IoT scenarios.

The modular design of the system allows for flexible
parameter tuning and future integration of control protocols,

making it adaptable to various use cases such as voice
interaction systems, industrial acoustic monitoring, and edge-
AI research.

Overall, the proposed system demonstrates a practical and
extensible framework for embedded audio signal processing,
with a balance of real-time performance, hardware efficiency,
and software flexibility.

ACKNOWLEDGMENTS

This work was supported by JST SPRING, Grant Number
JPMJSP2119. This work was also supported by the Grants
for Revitalization of Regional Universities and Industries,
“Realization of a semiconductor complex base triggered by
next-generation semiconductors and revitalization of local
economies.” This work was partially supported through the
activities of VDEC, The University of Tokyo, in collaboration
with Cadence Design Systems, NIHON SYNOPSYS G.K.,
and Siemens Electronic Design Automation Japan K.K.

REFERENCES

[1] Z. K. Abdul and A. K. Al-Talabani, “Mel frequency cepstral coefficient
and its applications: A review,” IEEE Access, vol. 10, pp. 122 136–
122 158, 2022.

[2] S. Umesh, L. Cohen, and D. Nelson, “Fitting the mel scale,” in Proc.
ICASSP, vol. 1, 1999, pp. 217–220.

[3] M. Slaney, “Auditory toolbox,” Interval Research Corporation, Tech.
Rep, vol. 10, no. 1998, p. 1194, 1998.

[4] C. Zhao, N. Yamamura, H. Tsutsui, and T. Ohgane, “Evaluation of
computational cost and result accuracy in design and efficient imple-
mentation of log-mel spectrogram and MFCC feature extraction using
fixed-point arithmetic on FPGA,” in Proc. ISPACS, 2024, pp. 1–5.

[5] Raspberry Pi Foundation. (2023) Raspberry Pi 4 Model B Specifications.
[Online]. Available: https://www.raspberrypi.com/products/raspberry-pi-
4-model-b/specifications/ (Accessed 2025-07-20).

[6] B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar, E. Battenberg,
and O. Nieto, “librosa: Audio and music signal analysis in python,” in
Proc. SciPy, 2015, pp. 18–24.

