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Abstract— High-resolution satellite imagery is essential for 

many remote sensing applications, such as land-use mapping, 

infrastructure monitoring, and environmental assessment. 

Unfortunately, acquiring high-resolution data is expensive, 

constrained by limited bandwidth, and limited by infrequent 

satellite passes. Super-resolution (SR) techniques offer a 

software-based approach to enhance image resolution by 

reconstructing high-resolution images from low-resolution 

inputs, utilizing deep learning. In this work, we present a fully 

implemented, lightweight attention-enhanced U-Net model for 

real-time satellite image super-resolution on an edge AI 

platform. We optimize the model using the Xilinx Vitis AI 

toolchain and deploy it on the Xilinx Kria KV260 FPGA board. 

The development pipeline includes quantization-aware 

training, pruning, model compilation, and hardware 

deployment. The network architecture is carefully designed to 

preserve spatial detail while being compatible with 

quantization and FPGA constraints. We evaluated the system 

on the UCMerced Land Use dataset with ×2 and ×4 upscaling 

factors. Results show that the INT8-quantized model produces 

high-quality super-resolved images with low inference latency 

and efficient resource usage. These outcomes demonstrate the 

practicality of the proposed system for real-time, embedded 

remote sensing applications. 

Keywords—Super-resolution, remote sensing, edge AI, 

quantization aware training, Xilinx Kria KV260, Vitis AI, FPGA 

deployment, U-Net 

I. INTRODUCTION 

High-resolution satellite imagery is crucial for various 

remote sensing applications, including land-use mapping, 

infrastructure monitoring, and environmental assessment. 

However, acquiring high-resolution data remains challenging 

due to limitations in cost, bandwidth, and revisit frequency. 

These limitations reduce the availability of timely and 

detailed imagery, which can hinder tasks that require fine-

grained spatial information such as edge detection, texture 

analysis, and structural mapping. 

Super-resolution (SR) techniques have emerged as a cost-

effective solution by reconstructing high-resolution images 

from low-resolution inputs using computational methods. In 

remote sensing, SR enables enhanced image interpretation 

without requiring additional data acquisition or hardware 

upgrades. Deep learning models, particularly those based on 

convolutional neural networks (CNNs), have demonstrated 

remarkable success in this domain by learning complex 

mappings from large-scale training data for a GPU-based 

environment. However, these models are often too large or 

computationally demanding for real-time or edge 

deployment. 

Edge AI platforms such as the Xilinx Kria KV260 offer a 

promising solution by enabling low-power, high-

performance inference on embedded systems. The platform 

integrates ARM processors, FPGA fabric, and a Deep 

Processing Unit (DPU), and supports optimization workflows 

using the Vitis AI toolchain. These features make it suitable 

for deploying lightweight deep learning models in field 

settings such as UAVs or remote monitoring stations. 

To be deployable on edge hardware, SR models must be 

efficient, quantization-friendly, and accurate enough to 

recover fine textures and small objects. While several recent 

models have pushed the boundaries of accuracy in Remote 

Sensing image Super Resolution (RSISR), many are still too 

large or impractical for embedded use. This motivates the 

need for models that strike a balance between accuracy, 

model size, and hardware compatibility. 

This paper presents a complete, edge-deployable SR 

system optimized for the Xilinx Kria KV260. Our work 

builds upon the AERU-Net [3], a 2025 U–Net–based model 

that integrates edge recovery and attention mechanisms to 

enhance reconstruction quality while reducing model 

parameters. We further optimize the model for quantization-

aware training and real-time deployment. 

II. RELATED WORKS 

A. Deep Learning based Single Image Super Resolution 

Single Image Super-Resolution (SISR) plays a critical 

role in remote sensing by reconstructing high-resolution (HR) 

imagery from low-resolution (LR) inputs. The enhanced 

spatial resolution significantly improves downstream 

applications such as land classification, infrastructure 

detection, and environmental analysis. Traditional 

interpolation methods, although computationally efficient, 

often fail to recover fine structures and texture details, 

particularly in complex scenes. The advent of deep learning 

has transformed the SISR domain. SRCNN [1] was one of the 

earliest convolutional models to learn end-to-end mappings 

for super-resolution, laying the groundwork for deeper 

architectures. It was followed by deeper models such as 

EDSR [2] and RCAN [4], which introduced residual learning 

and channel attention, respectively, to improve reconstruction 

quality. However, their high computational complexity and 
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large number of parameters present significant obstacles for 

real-time or edge-based applications. 

To overcome these limitations, researchers have 

developed models specifically targeting Remote Sensing 

Image Super-Resolution (RSISR). U-Net and its derivatives 

have gained prominence due to their encoder–decoder 

architecture and skip connections, which facilitate multi-

scale context fusion while preserving spatial detail. Models 

based on U-Net have demonstrated effectiveness in 

recovering small-scale structures and sharp edges in satellite 

images. Recent advances include the integration of 

transformer-based modules and attention mechanisms into 

RSISR networks. TransENet [5] introduced a multistage 

enhancement structure that combines high- and low-

dimensional feature embeddings. Although it achieved 

competitive performance, its large parameter counts and 

inefficient upsampling layers limited its practicality, 

particularly on resource-constrained hardware. 

In 2024, CSA-FE [6] further developed this approach by 

incorporating channel and spatial attention modules to 

enhance feature discrimination and improve high-frequency 

detail restoration. Despite improvements in visual quality, 

CSA-FE suffered from high computational complexity and 

limited ability to preserve content-aware attention across 

different scales. 

 HAUNet [7] further advanced the U-Net architecture by 

embedding hybrid attention modules to capture global spatial 

context and content information. It also introduced a cross-

scale interaction module to better link encoder outputs at 

different resolution levels. While HAUNet achieved strong 

performance in capturing abstract semantics, it demonstrated 

limited capability in recovering sharp edges and was 

computationally demanding. 

To address these challenges, AERU-Net [3], was 

proposed in 2025 as a lightweight and deployable RSISR 

model. It enhances the standard U-Net backbone by 

introducing three core components: an Edge Recovery Block 

(ERB) for structural fidelity, spatial and channel attention 

modules (SAM and CAM) for adaptive focus, and a Cross-

Scale Interaction Module (CIM) for efficient multi-level 

communication. These modules collectively improve both 

reconstruction accuracy and hardware compatibility. 

This study builds upon AERU-Net by modifying its 

architecture and training procedures to support quantization-

aware training (QAT). The resulting model is optimized for 

deployment on the Xilinx Kria KV260 platform, enabling 

real-time inference with reduced memory and compute 

overhead. 

B. Xilinx Kria KV260 board 

Edge AI platforms have emerged as a practical solution 

for deploying deep learning models in resource-constrained 

environments, such as those found in UAVs, field stations, 

and remote sensing payloads. These platforms aim to 

provide efficient, low-latency inference with limited power 

and memory resources. Among these, the Xilinx Kria 

KV260 stands out as a reconfigurable System-on-Chip 

(SoC) platform that strikes a balance between performance, 

flexibility, and energy efficiency. The KV260 is built on the 

Zynq UltraScale+ MPSoC architecture, which combines a 

quad-core ARM Cortex-A53 processor, a dual-core Cortex-

R5 real-time processor, and programmable logic based on 

FPGA fabric [8]. This design allows heavy AI computations 

to be offloaded to hardware while general processing runs on 

the ARM cores. Figure 1 shows the KV260 development 

board, which pairs the Zynq MPSoC module with a carrier 

board for vision applications. 
A key feature of the KV260 platform is its 

integrated Deep Processing Unit, a specialized neural 

network accelerator implemented in the FPGA logic. The 

DPU is an IP core optimized for deep learning workloads, 

particularly convolutional neural networks, leveraging 

parallel computation and fast on-chip memory to achieve 

high throughput. In essence, the DPU is a dedicated AI 

engine for convolutional network inference, freeing the 

ARM cores from the bulk of the math-intensive work. Xilinx 

provides a comprehensive software stack called Vitis AI to 

support deploying models onto the DPU.  

Fig. 1. Xilinx Kria KV260 board 

Using the Vitis AI toolchain, neural network 

models trained in frameworks such as PyTorch or 

TensorFlow can be converted into a DPU-compatible format 

through several optimization steps. These include 

quantization, pruning, and compilation into a hardware 

executable. Quantization is especially crucial. By reducing 

model precision from 32-bit floating point to 8-bit integer, 

one can shrink the model size by a factor of four and often 

achieve a two- to four-times speedup in inference, with 

significantly lower memory bandwidth usage. This int8 

optimization yields faster, smaller models while maintaining 

near-original accuracy when done with proper calibration or 

quantization-aware training. Pruning further trims the model 

by removing redundant weights, which also helps meet the 

limited on-chip memory constraints. 

III. METHODOLOGY 

A. Network Architecture 

Our proposed network builds upon the AERU-Net 

architecture, which is specifically designed for remote 

sensing image super-resolution. AERU-Net follows the 

standard U-Net design, which uses an encoder–decoder 

structure with skip connections. This structure helps 

preserve spatial details and allows the network to extract 

features at multiple scales. The model starts with a 3×3 

convolution to extract shallow features from the low-

resolution input image. These features are then passed 

through three encoder stages. Each stage reduces the spatial 



resolution while increasing the number of channels, allowing 

the network to learn both low- and high-level information. 

The outputs from the three encoder levels, called 𝐹1, 𝐹2, 𝐹3 

are combined using a Cross-Scale Interaction Module (CIM), 

which merges information across different feature scales. 

The CIM outputs are denoted as 𝑂𝑈𝑇1, 𝑂𝑈𝑇2, 𝑂𝑈𝑇3. 

Fig. 2. Overview of the Algorithm 

The decoder path mirrors the encoder. It takes the CIM 

outputs and progressively upsamples them, combining each 

decoder output with the matching encoder features through 

skip connections. This helps the network recover fine 

textures and object boundaries. The final decoder result is 

fused with a bilinearly upsampled version of the input using 

a reconstruction block. This improves edge sharpness and 

overall consistency. The whole process is expressed as: 

R1 = 𝐷𝑒𝑐𝑜𝑑𝑒𝑟1(𝑂𝑈𝑇1⨁𝐷𝑒𝑐𝑜𝑑𝑒𝑟2(𝑂𝑈𝑇2⊕𝐷𝑒𝑐𝑜𝑑𝑒𝑟3(O𝑈𝑇3))) (1) 

𝐼𝑆𝑅 = 𝑅𝑒𝑐𝑜𝑛(𝑅1) ⊕ 𝐵𝐼(𝐼𝐿𝑅)  (2) 

where ISR is the super-resolved output, ILR is the input, 

and BI(ILR ) is its bilinear interpolation. The ⊕  symbol  

indicates element-wise addition or concatenation 

 To enhance feature learning and improve the 

reconstruction of fine spatial details, AERU-Net 

incorporates two specialized attention mechanisms: the 

Channel Attention Module (CAM) and the Spatial Attention 

Module (SAM) [9]. The CAM helps the network learn the 

most relevant channels for specific features. It emphasizes 

texture channels when identifying urban types and prioritizes 

intensity channels when distinguishing between asphalt 

roads and concrete buildings.  

This enables the network to selectively amplify channel-

wise information that is most indicative of structural and 

material variations in remote sensing imagery. The SAM 

helps the network identify which spatial regions of the image 

require more attention during processing. In AERU-Net, 

both CAM and SAM are integrated at the first level of the 

encoder and decoder, where spatial resolution is high and 

local structures are more apparent. At deeper levels, only 

CAM is retained due to the increased abstraction of features 

and reduced spatial resolution. 

Fig. 3. Encoder 1, ERB, SAM, CAM, FFN 

In addition to attention mechanisms, AERU-Net 

incorporates Edge Recovery Blocks (ERBs) throughout all 

encoder and decoder stages. The ERB enhances the model’s 

ability to capture high-frequency details by applying 

classical edge-detection filters, such as Sobel and Laplacian 

operators, to extract directional and multi-scale edge 

information. This module is particularly effective in 

reinforcing boundary representations between land cover 

classes, such as building footprints, roads, coastlines, and 

field edges. The ERB outputs are fused with attention-based 

features through residual connections, which enhance 

learning stability and preserve detailed spatial structures. In 

the optimized version of the model, the ERB is simplified to 

reduce computational cost while maintaining effective edge 

enhancement. The proposed architecture builds upon 

AERU-Net with structural simplifications aimed at 

improving deployment efficiency and quantization 

compatibility. 

Fig. 4. Model Overview 

Figure 4 illustrates the model lineage from the AERU-

Net to our final optimized KV260. The AERU-s refers to a 

partially simplified AERU-Net variant trained in FP32. The 

final optimized model is a further compressed version 

designed for INT8 quantization and deployment on the 

Xilinx Kria KV260. 

B. Model Optimization 

Deploying the above model on the FPGA-based DPU 

required a series of adaptations to reduce complexity and 

ensure compatibility with the Vitis AI toolchain. We 

modified both the architecture and the training process to 

create an optimized version of the network that runs 

efficiently in 8-bit integer format on the KV260. 

Deployment constraints, including the need for operator 

support on the DPU and the requirement for quantization-

aware operations, guided the optimization process. The 

baseline model utilized advanced normalization layers, 

including LayerNorm and GroupNorm, in addition to 

BatchNorm. These were removed, keeping only standard 

Batch Normalization layers which are well-supported on the 

DPU. This not only improves compatibility but also reduces 

computational overhead. 

The attention pathway also requires simplification. The 

original design integrated three modules: CAM, SAM, and 

an ERB. In the optimized model, the CAM and SAM 

modules were retained but stripped of normalization layers 

and redesigned to rely solely on quantization-friendly 

pooling and pointwise operations. The edge attention block 

was excluded entirely due to its complexity and the lack of 

support from operators. To reduce computation without 

compromising representation capacity, we replaced the 

original feed-forward network (FFN) [10] structure with a 

lightweight configuration using SimpleGate activation 

combined with depthwise separable convolutions. This 

design allows efficient elementwise nonlinearity and spatial 

filtering while reducing multiply-accumulate operations. 

Similarly, tensor rearrangement operations previously 



dependent on the einops library and custom projection heads 

were re-implemented using .view() and .permute() functions 

to meet the operator constraints of Vitis AI. The output 

reconstruction block was also modified. Bilinear upsampling 

and residual fusion in the model were replaced with an 

efficient pixel shuffle operation, which offers a hardware-

friendly alternative for spatial resolution expansion. 

C. Deployment Workflow Using Vitis AI 

Deploying the quantized super-resolution model on the 

Kria KV260 involves several stages, using the Xilinx Vitis 

AI toolchain to transition from a trained network to efficient 

on-board inference. 

Fig. 5. Overview of the Optimization and Deployment Workflow on the 

Vitis AI tool 

We first trained the model on a GPU using PyTorch in 

full precision to establish a high-performance baseline. After 

the initial convergence, we applied quantization-aware 

training to fine-tune the network. During this phase, fake 

quantization layers simulated 8-bit arithmetic for weights 

and activations during the forward pass. The model 

progressively adjusted to these constraints, resulting in a set 

of weights that were robust to low-precision inference. Once 

training was complete, the model was exported to the ONNX 

format, which is compatible with the Xilinx toolchain. 

The ONNX model was passed through the Vitis AI 

Quantizer, which statically quantified weights and 

activations to INT8. We enabled bias_correction to adjust for 

quantization bias and ensured that all quantizable layers met 

the constraints of the DPU runtime. Unsupported operations 

were eliminated during model design to avoid post-

quantization incompatibilities. 

After quantization, the model was compiled using the 

Vitis AI Compiler targeting the DPUCZDX8G architecture 

on the Kria KV260. This step generated a .xmodel binary 

file, containing the instructions required for the Deep 

Processing Unit (DPU) to perform inference. The .xmodel 

file was deployed onto the board along with a Python 

wrapper for data preprocessing and postprocessing. Fig. 4 

illustrates the full deployment pipeline. The host system 

handles image input and preprocessing, forwards the image 

to the KV260 over USB or Ethernet, and invokes the DPU 

via Vitis AI Runtime (VART). The DPU executes the 

quantized model, returning an upscaled image. 

Postprocessing, including image clipping and format 

conversion, is performed on the host side before the output 

is displayed or stored. 

This deployment workflow ensures efficient utilization 

of the KV260 hardware resources. The entire system can 

perform INT8 super-resolution inference at real-time speeds 

with significantly reduced memory and energy consumption, 

making it suitable for edge scenarios such as UAV image 

processing and field-based analytics. 

IV. EXPERIMENT AND RESULT 

A. Datasets 

We evaluated our model on the UCMerced Land Use 

dataset [11], which comprises 2,100 aerial RGB images 

across 21 scene types, including agricultural, residential, and 

industrial areas. Each image is 256×256 pixels with a 0.3-

meter resolution, making it ideal for testing spatial 

enhancement. The dataset was split into 70% training, 15% 

validation, and 15% testing. To simulate low-resolution 

inputs, we applied bicubic downsampling and tested the 

model with ×2 and ×4 upscaling. 

B. Experiment setup 

The training and quantization were performed on a 

local workstation with an Intel Core i7-14700 CPU, 32 GB 

RAM, and an NVIDIA RTX 4090 GPU. We train a DPU-

optimized super-resolution model on the UCMerced dataset, 

RGB aerial images, for two upscaling factors ×2 and ×4. 

This optimized model has significantly fewer parameters 

than the AERU Net model, allowing it to meet FPGA 

deployment constraints. The parameter count is reduced to 

approximately 0.29 M, compared to 0.9 M in the AERU-s. 

The reduction is achieved by using a slimmer architecture 

with fewer feature channels and blocks while maintaining 

performance. 

We train each model for 300 epochs on the 

UCMerced training set using 1050 images and a batch size 

of 4 for ×4 and 8 for ×2. The Adam optimizer is used with a 

learning rate of 1×10⁻⁴. The loss function combines L1 and 

L2 pixel losses with a fast Fourier transform loss, weighted 

at 0.1, to help preserve textural details. Validation 

performance is monitored on 105 images. Early stopping is 

set with a patience of 30 epochs to prevent overfitting. After 

training, the float model achieves a peak PSNR [12] of 

approximately 32.6 dB for ×2 and 26.7 dB for ×4 on the 

validation set, utilizing the optimized architecture. 

Following float training, the model is quantized to 

8-bit format using the Xilinx Vitis AI toolchain. Post-

training calibration is first applied on a small subset of 

images to initialize quantization parameters. Then, 

quantization-aware training is conducted for 150 additional 

epochs with a reduced learning rate of 5×10⁻⁶. During this 

stage, weights and activations are constrained to the INT8 

data type. Initially, PSNR drops, for example, from 26.7 to 

25.3 dB for ×4 after calibration, and further to 23.9 dB during 

early epochs. By epoch 150, PSNR recovers to 

approximately 24.3 to 24.5 dB. A similar pattern is observed 

for the ×2 model, where PSNR drops from 32.5 to 29.3 dB 

and later recovers to 29.8 dB. 



Final quantized models are exported to the XModel 

format and compiled using Vitis AI. The entire pipeline is 

implemented in PyTorch with quantization and deployment 

handled through the Vitis AI toolchain. The deployed 

XModel runs on the Xilinx Kria KV260 FPGA with a deep 

processing unit accelerator. Vitis AI Runtime is used for 

inference. Input patches of size 32×32 for ×4 or 64×64 for 

×2 are upscaled to 128×128. These are tiled to reconstruct 

full images due to on-chip memory constraints. The result is 

a fully integer 8-bit model compatible with DPU execution 

and suitable for real-time edge inference. 

C. Performance on Kria KV260 

In this section, we present the performance results on the 

Kria KV260, comparing AERU-Net with our optimized 

model for 2× and 4× super-resolution on the Xilinx KV260.  

At ×2 upscaling, AERU-Net achieves a higher PSNR 

(34.64 dB) than our FP32 model (32.56 dB), although their 

SSIM values are nearly identical (~0.93). AERU-Net also 

attains a better spectral correlation and a lower SAM error, 

indicating it preserves spectral content slightly more 

faithfully. Our INT8 quantized model exhibits a noticeable 

drop in quality at ×2, with PSNR falling to 29.72 dB and 

SSIM to 0.8698, accompanied by reduced SCC (0.3606) and 

a higher SAM (0.0691) compared to the FP32 version. This 

quantization impact reflects the trade-off for efficiency, as 

the INT8 model runs faster on the KV260 but with degraded 

image fidelity.  

At ×4 upscaling, the gap between AERU-Net and our 

FP32 model narrows in some respects. AERU-Net’s PSNR 

is approximately 1.3 dB higher, but our model slightly 

outperforms in SSIM, suggesting it retains structural details 

well, even at high magnification. AERU-Net still maintains 

an advantage in spectral accuracy with a higher SCC and a 

marginally lower SAM. Once again, the INT8 struggles with 

this larger scale factor, as its PSNR drops to 24.59 dB and 

SSIM to 0.6856, alongside a significantly lower SCC and 

higher SAM.  

Despite the slight performance loss, our model’s strength 

lies in its extreme efficiency. 

TABLE I.  PERFORMANCE OF OPTIMIZED MODEL-KV260 ON 

UCMERCED DATASET 

Model PSNR SSIM SCC SAM 

AERU-Net (×2) 34.64 0.9346 0.6514 0.0478 

Our (×2, FP32) 32.56 0.9332 0.0593 0.0539 

Our (×2, INT8) 29.72 0.8698 0.3606 0.0691 

AERU-Net (×4) 27.97 0.7686 0.2842 0.1007 

Our (×4, FP32) 26.69 0.7939 0.2172 0.1020 

Our (×4, INT8) 24.59 0.6856 0.0976 0.1231 

 

Higher values are better for PSNR, SSIM, and SCC [12]. 

Lower values are better for SAM. End-to-end throughput 

includes all memory and processing overheads. As shown, 

the INT8 models on KV260 produce results close to the float 

baseline. 

In addition to speed, memory footprint is significantly 

reduced. Table II compares model sizes. The AERU-s model 

for ×4 has 0.9260 million parameters and requires 

approximately 3.70 megabytes. The optimized version has 

0.2952 million parameters and a size of 1.18 megabytes in 

FP32. After INT8 quantization, this reduces to 0.30 

megabytes. The result is more than a 12 times reduction in 

size. The model fits within the KV260 SRAM, avoiding the 

need for external DDR memory and improving both latency 

and energy efficiency. 

TABLE II.  PERFORMANCE OF AERU-NET VS. OUR FP32/INT8 

MODELS ON THE KRIA KV260 (2× AND 4× SR) 

Model Params (M) 

AERU-Net (×4) 0.706 

AERU-S (×4) 0.9260 

Optimized KV260 INT8 (×4) 0.2952 

AERU-Net (×2) 0.705 

AERU-S (×2) 0.9052 

Optimized KV260 INT8 (×2) 0.2744 

 

Float models are estimated to be using 4 bytes per 

parameter. The INT8 models use 1 byte per parameter. The 

optimized models contain approximately 70 percent fewer 

parameters, and quantization further reduces the memory by 

75 percent. 

TABLE III.  COMPARISON ON UCMERCED DATASET AT SCALE OF ×4. 

Model Parameters (M) 

TransENet 37.46 

CSA-FE 32.35 

HAUNet 1.62 

AERU-Net 0.706 

Optimized KV260 0.2952 

As shown in the table above, the optimized KV260 

model contains only 0.295 million parameters. This is less 

than half the size of AERU-Net at 0.706 million and 

significantly smaller than other models such as TransENet 

and CSA-FE. Its compact architecture makes it highly 

suitable for deployment on the resource-constrained KV260 

platform, providing faster inference and lower memory 

usage. In practice, the proposed model sacrifices only a small 

amount of accuracy to achieve substantial efficiency gains. 

Visual outputs confirm that the optimized model 

produces perceptually sharp and structurally consistent 

results. 

 

1) ×2 upscale 

 

   

Fig. 6. “building52” from the UCMerced datase: GT (Left), LR (Middle), 

and Our Optimized KV260 Result (Right) 



   

Fig. 7. “airplane80” from the UCMerced datase: GT (Left), LR (Middle), 

and Our Optimized KV260 Result (Right) 

Figure 6 and Figure 7 showcase the output from our 

deployed INT8 model at ×2 upscaling on example scenes 

from the UCMerced dataset. While slight softening is 

observed compared to the ground truth, fine details such as 

rooftop edges and airplane contours are successfully 

recovered 

2) ×4 upscale 

 

   

Fig. 8. “runway65” from the UCMerced datase: GT (Left), LR (Middle), 

and Our Optimized KV260 Result (Right) 

   

Fig. 9. “storagetanks81” from the UCMerced datase: GT (Left), LR 

(Middle), and Our Optimized KV260 Result (Right) 

Figures 8 and 9 present results at the more challenging ×4 

upscaling. Despite the increased difficulty, the model 

successfully recovers key structures such as the circular 

outline of storage tanks and the linear geometry of runways, 

although textures remain partially blurred and some edge 

artifacts are visible. 

V. CONCLUSION 

This paper presents a complete framework for 

deploying a deep learning-based super-resolution model for 

remote sensing imagery on edge devices. The proposed 

system is derived from a structurally simplified version of 

AERU-Net, adapted for quantization-aware training and 

deployment using the Xilinx Vitis AI toolchain. The 

optimized model is successfully implemented on the Xilinx 

Kria KV260 platform and evaluated at ×2 and ×4 upscaling 

factors. Quantization-aware training minimizes accuracy 

degradation, with PSNR loss under one decibel and SSIM 

drop under ten percent. The final INT8 model achieves real-

time inference exceeding 20 frames per second. Its memory 

usage is reduced from approximately 3.7 megabytes to just 

0.3 megabytes, allowing it to run entirely within the FPGA’s 

on-chip memory without relying on external DRAM. These 

results demonstrate the practicality of deploying deep super-

resolution models on edge AI platforms for efficient and 

scalable remote sensing applications. 
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