

Virtualizing Industrial Networks with EtherCAT
Protocol Implementation

Shuhei Otaki

Graduate School of Science and Engineering,
 Chitose Institute of Science and Technology

 Chitose, Japan
 m2240120@photon.chitose.ac.jp

Takashi Yamada
Silicon Research Center,

 Chitose Institute of Science and Technology
 Chitose, Japan

 t-yamada@photon.chitose.ac.jp

Abstract—In factory networks, various network protocols
are used to meet strict requirements for accuracy and latency.
Because the controllers that use these protocols are built with
dedicated equipment, it is difficult to mix them with other
protocols. Moreover, these controllers often rely on specialized
software, complicating the integration of innovative
technologies like AI. Therefore, virtualization of factory
networks, which involves software-based factory network
protocols and using general-purpose servers as controllers, is a
very attractive approach. However, one of the challenges of
software-based factory network protocols is real-time
responsiveness. The time fluctuation of communication packet
intervals caused by using a general-purpose server reduces the
accuracy and speed of control. In this paper, we implemented
the EtherCAT protocol in software and measured the jitter.
Through experimentation, we confirmed that our system
achieves stable 8 ms cyclic communication, enabling consistent
control of multiple daisy-chained slave devices.

Keywords— Software Defined Automation, vPLC, Protocols

I. INTRODUCTION

In recent years, under the paradigm of Industry 4.0, the
realization of smart factories—where all machines are
interconnected through networks and autonomously optimize
production processes—has gained significant attention. At the
core of this concept lies the Industrial Internet of Things (IIoT),
which enables seamless connectivity among industrial devices,
sensors, and actuators, facilitating real-time data acquisition,
analysis, and control.

To support these functionalities, communication networks
in industrial automation must meet extremely stringent
requirements, such as ultra-low latency, deterministic
behavior, precise synchronization, high availability, and
secure data transmission. Production downtimes due to
network delays or failures can result in immediate and
substantial economic losses. Consequently, real-time Ethernet
technologies such as EtherCAT, PROFINET, and EtherNet/IP
have been widely deployed in industrial environments,
achieving communication latencies in the sub-millisecond
range and ensuring reliable cyclic exchange between
controllers and field devices [1].

Despite their capabilities, these industrial communication
protocols rely heavily on proprietary technologies, which
limits their interoperability across vendors and systems.
Moreover, they are tightly coupled to specialized hardware

platforms, particularly Programmable Logic Controllers
(PLCs), making system integration, migration, or
reconfiguration costly and inflexible [2]. This rigidity imposes
constraints on hardware reusability and modular upgrades,
increasing the total cost of ownership.

A wide-ranging survey by Danielis et al. [3] has classified
and compared real-time communication technologies via
Ethernet in industrial automation environments, highlighting
challenges such as non-uniform protocol stacks, timing
constraints, and implementation overheads. These
foundational insights underline the need for more unified and
flexible network architectures to support future IIoT
applications.

To address these challenges, researchers have explored the
application of Software-Defined Networking (SDN) and
Network Functions Virtualization (NFV) in industrial
networks. SDN decouples the control plane from the data
plane, enabling centralized, programmable management of
traffic flows. This opens possibilities for dynamic
reconfiguration, flow prioritization, and fault-tolerant routing
in deterministic environments. A comprehensive survey by
Granelli et al. [4] further categorizes SDN solutions and
controller architectures for IIoT scenarios, identifying gaps in
scalability, reliability, and real-time guarantees.

For example, the VirtuWind project proposed an SDN-
and NFV-based architecture tailored for mission-critical
environments such as wind farms. This architecture introduces
network slicing, multi-tenancy, and on-demand service
provisioning while maintaining the stringent timing and
reliability constraints of industrial control networks [5].

In parallel, the combination of SDN and Time-Sensitive
Networking (TSN) has been proposed to support mixed-
criticality applications, allowing coexistence of time-critical
and best-effort traffic in the same physical infrastructure [6],
[7]. These approaches suggest that SDN can enhance the
manageability and extensibility of industrial networks without
compromising real-time performance.

Meanwhile, virtualization of industrial control systems is
gaining attention as an alternative to traditional PLCs.
Approaches such as cloud-based soft-PLCs [8] and container-
based virtual PLCs [9] demonstrate the feasibility of
implementing control logic on general-purpose computing
hardware. These architectures enable dynamic software

979-8-3315-6946-4/25/$31.00 ©2025 IEEE

2025 International Symposium on Multimedia and Communications Technology (ISMAC)

updates, integration with AI-based decision-making, and
remote or distributed control scenarios previously impractical
with hardware-bound PLCs. However, as noted by Gundall et
al. [10], virtualization technologies must be carefully
evaluated in terms of their impact on timing guarantees,
reliability, and orchestration complexity. Their study raises
the important question of whether virtualization will
ultimately serve as a catalyst or a show-stopper for industrial
automation, especially in time-critical scenarios.

At a higher architectural level, frameworks like the
"Controller of Controllers" have been proposed to manage
heterogeneous SDN domains. This hierarchical control design
allows for protocol-agnostic management of industrial traffic
across multiple technologies and vendors, contributing to
unified industrial networking [11].

In response to these trends and challenges, we previously
proposed a novel architecture that transforms industrial
Ethernet protocols into modular software drivers executable
on general-purpose servers [12]. Our system enables real-time
protocol generation and motion control—e.g., for
EtherCAT—without requiring specialized hardware or
modifications to the physical network. Moreover, control
logic can be written in conventional programming languages
and integrated with advanced functionalities such as delay
compensation and AI-based collaborative control. Since the
system operates on standard server platforms, updates and
extensions can be performed with minimal overhead, offering
scalability, portability, and compatibility for modern
industrial automation.

This paper is organized as follows. In Section II, we
describe the EtherCAT, which is the protocol we implemented
in this study. In Section III, the overview of the proposed
system is described. In Section IV, the experimental results of
the implemented EtherCAT protocol driver are presented. In
Section V, the evaluation of software-induced timing jitter is
discussed, along with strategies for its improvement. In
Section VI, the paper is concluded.

II. PROPOSED SYSTEM

This section describes EtherCAT, a protocol developed to
address issues of communication speed and synchronization
control that were limitations in conventional industrial
networks. EtherCAT utilizes standard Ethernet as its physical
layer while adopting a uniquely optimized communication
method for control applications, offering exceptional real-

time performance and synchronization accuracy. It was
introduced by Beckhoff Automation in 2003 and has since
become widely adopted as an open standard.

Figure 2 shows a typical topology in EtherCAT network.
EtherCAT employs a master-slave architecture, in which a
single master PLC controls multiple slave devices such as
sensors, actuators, and I/O modules. Physically, these slave
devices are typically connected in a daisy-chain configuration
using Ethernet cables. Each slave is equipped with two
Ethernet ports—an IN port and an OUT port—and processes
frames by receiving, handling, and forwarding them to the
next device. This simple configuration eliminates the need for
Ethernet switches or hubs, thereby simplifying wiring and
minimizing communication delay.

One of the most distinctive features of EtherCAT is its on-
the-fly processing mechanism. In this method, a single frame
transmitted by the EtherCAT master sequentially passes
through each slave on the network. As it passes through, each
slave reads from or writes to its designated byte region in real
time, without stopping or storing the frame. The processing is
completed within a time frame of several tens to hundreds of
nanoseconds. This mechanism enables ultra-low
communication latency, reduces overall header overhead by
eliminating individual responses, and ensures highly stable
communication timing. This on-the-fly mechanism stands in
stark contrast to conventional polling-based communication
systems, where the master must communicate with each slave
individually. It is a core technology that defines the high-
performance characteristics of EtherCAT.

Fig. 2 EtherCAT Network Topology

Slave #1 Slave #nSlave #2

Master

Data from Slaves

Data to Slaves

app app app

sensors, actuators, and I/O modules.

header #1 #2 #n #1 #2 #n

Output Data Area Input Data Area

Ethernet Frame

On-the-fly
Read/Write

Fig. 1 Proposed Architecture

An EtherCAT frame can contain multiple datagrams
within a single Ethernet frame. Each datagram is capable of
accessing a specific slave or memory address range. This
architecture enables simultaneous updates and distributed
access in multi-node environments, contributing to the
protocol’s efficiency and scalability.

III. ETHERCAT PROTOCOL

The proposed system is illustrated in Fig. 3. A general-purpose
server, acting as the EtherCAT master, is connected to
multiple slaves in a daisy-chain topology. The EtherCAT
master consists of two main components: a Control
Application, which computes commands to be issued to the
slaves (such as robotic arms), and a Protocol Driver, which
generates the EtherCAT protocol frames. Although our
primary objective is to complete the protocol driver on the
master side, we also implemented a protocol driver on the
slave side for experimental purposes. Data exchange between
the Control Application and the Protocol Driver is carried out
via UDP communication within the server.

Figure 4 shows the flowchart of the transmission process
in the protocol driver. The protocol driver is composed of two
multithreaded components: the Data Receive Handler, which
receives UDP packets from the Control Application, and the
EtherCAT Frame Generator, which transmits EtherCAT
frames outside the server. When the Data Receive Handler
receives a UDP packet, it extracts the data from predefined
positions in the packet and stores it in memory. The EtherCAT
Frame Generator periodically sends EtherCAT frames at fixed
intervals defined by the protocol, regardless of whether new
data has been received from the Control Application. If data is
present in memory, it is copied into the appropriate datagram
region of the EtherCAT frame before transmission.

 We implemented the EtherCAT protocol driver using the
Go programming language and C programming language
respectively. In the protocol driver, we implemented four
EtherCAT commands: Logical Memory Write (LWR),
Logical Memory Read (LRD), Broadcast Read (BRD), and
Auto Increment Write (APWR). The LWR command is used
to send data from the master to the slaves, while the LRD
command retrieves data, such as sensor values from the slaves
to the master. The BRD command is employed to notify the
master of any status abnormalities in the slaves, and the
APWR

 command is used for issuing initial configuration

instructions to the slaves.

In the EtherCAT protocol, since all slaves receive the same
Ethernet frame from the master through a daisy chain
connection, it is necessary to specify where each slave's input
and output are located within the Ethernet frame. Therefore,
we propose incorporating this initial configuration into the
EtherCAT protocol driver.

command is used to inform each slave of the specific byte
offsets in the Ethernet frame where it should read input data
from and write output data to. After the initial configuration,
the EtherCAT protocol driver will periodically send LRD,
LWR, and BRD commands to enable communication between
the master and multiple slaves.

IV. ETHERCAT PROTOCOL IMPLEMENTATION

Figure 5 shows a visual representation of the experimental
setup, including the server for EtherCAT master, Raspberry Pi
4 for slaves and image transmission terminal, and the robotic
arm. The robotic arm utilized in this study is the Lite 6 from
uFactory, while the EtherCAT module employed is the
EasyCAT developed by AB&T. The server is running the
Ubuntu 22.04 LTS operating system. The network standard
uses 100BASE-TX, which is aligned with the EtherCAT
specifications.

Fig. 5 Experimental System Setup

Fig. 5 Experimental System Setup

Fig. 3 Proposed System

Fig. 4 Protocol Driver Flowchart

Data Receive
Handler

Start UDP server

Wait for UDP
packet

UDP packet
arrived?

N
Y

Datagram →
Buffer data

Slave
Configuration

Buffer data →
Datagram

Sleep (X ms)

Send EtherCAT
frame

EtherCAT Frame
Generator

To demonstrate that communication with multiple slaves
is functioning correctly, each slave is running a different
program. One is Robotic Arm Control, and the other is
Calculation. The Image Recognition and Control Application
running on the master system receives image data from an
image transmission terminal and performs object detection
using YOLOv3 (You Only Look Once version 3). Upon
recognizing a playing card, the application extracts its
coordinate information and transmits it to the slave device via
the EtherCAT protocol. On the slave side, the Robotic Arm
Control Program interprets the received coordinates, actuates
the robotic arm to pick up the identified card, and transports it
to a predefined location. The Calculation program within
Slave 2 takes an input X provided by the master and returns
an output Y according to the formula Y=255 − X. The master
increments X every 8 ms frame.

The experimental results are shown in Figs. 6 and 7. Figure
6(a) presents the packet capture results for transmission and
reception on the master server. It was confirmed that packets
from the master's MAC address 00:e0:4c:63:52 were sent at
approximately 8 millisecond intervals. It is also confirmed that
packets sent from the master are immediately followed by
packets received from the slave (MAC address
02:e0:4c:63:52).

In this experiment, we set the data area within the LRW
and LRD commands to 32 bytes per slave. In the LWR
command, the first 12 bytes of the data represent the target
coordinate values (x, y, z) in single-precision floating-point
format. The value 0xd9 at the 33rd byte in this figure
represents the data X sent to Slave 2. The datagram of the
frame from the slave to the master following the EtherCAT
frame is shown in Fig. 6(b). The data in the LRD command
has been overwritten, with the first 12 bytes representing the
current xyz coordinates of the robotic arm. The value at the
33rd byte is the return value from Slave 2, which, due to the
internal processing time of Slave 2, is Y=0x27 in response to
the previous input value X=0xd8.

Figure 7(a) illustrates the time-series changes in the
coordinates of the robotic arm when two playing cards are

placed. It was confirmed that the robotic arm operates based
on the data transmitted via the EtherCAT protocol.

Figure 7(b) shows a 3D plot of the trajectory
corresponding to the coordinate data. The robotic arm moves
from the start position to the location of the first card (1), (2),
then transports the card to a predefined location (3), and
finally returns to the start position (4), (5). A similar sequence
of operations was also confirmed for the second card.

V. EVALUATION OF TIMING JITTER

One of the critical challenges in implementing the protocol
driver in software is timing jitter. In general-purpose operating
systems such as Linux, the kernel employs time-sharing to
manage various processes. As a result, interrupt handling and
task scheduling may cause temporary suspension of the target
process, introducing fluctuations in the actual execution
timing. This inherent behavior of the OS leads to non-
deterministic delays, which become particularly problematic
in systems requiring precise timing control.

In the proposed system, the component that demands the
highest level of timing accuracy is the Sleep process within
the EtherCAT Frame Generator, as illustrated in Figure 4. If
the sleep duration deviates from its intended value, the timing
of EtherCAT frame transmissions becomes irregular. Such
jitter in frame intervals may, in some cases, be interpreted by
the network as a protocol violation, potentially causing the
entire system to enter a fault state or halt unexpectedly.

(a)

(b)

Fig. 7 Robotic Arm Results (a) coordinate,
(b) trajectory

-300

-200

-100

0

100

200

300

0.0 5.0 10.0 15.0 20.0

X

Z

Y

time (s)

P
os

iti
on

(m
m

)

Fig. 6 Packet Capture Result

Given the severity of this risk, the first step in our
evaluation was to quantitatively assess the accuracy of the
sleep duration in the frame transmission logic. By doing so,
we aim to identify the extent of timing jitter introduced by the
software and determine whether corrective measures are
necessary to maintain network reliability and system stability.

This paper evaluates two approaches for reducing timing
jitter. The first approach involves real-time enhancement of
the Linux operating system. PREEMPT-RT (PREEMPT
Real-Time Patch) is a patch set that extends the Linux kernel
for real-time processing. By enabling fine-grained control of
kernel preemption, it significantly improves both the
determinism and responsiveness of task execution. In the
PREEMPT-RT kernel, spinlocks used for mutual exclusion
are replaced with mutexes, allowing preemption across the
entire kernel. Additionally, part of the interrupt handling (ISR)
is implemented as kernel threads, enabling more flexible
priority control and scheduling between user-space processes
and kernel tasks. As a result, PREEMPT-RT makes it possible
to achieve sub-millisecond-level jitter control and stable
periodic execution, which are difficult to realize in a standard
Linux environment.

The second approach is optimization of the real-time
execution environment. By applying the SCHED_FIFO
scheduling policy and assigning a high priority to the process
(priority level 80 in our experiment), we minimized
interference from other processes. Furthermore, by setting
CPU affinity, the target process was pinned to a specific CPU
core. This configuration avoids context switching between
CPU cores and cache misses, enabling more stable timing
control. These two techniques together are expected to
suppress jitter and improve the determinism of time-sensitive
operations in software-based periodic processing.

In this experiment, we implemented a C-language
program to execute a 4 ms sleep operation and measured the
actual sleep duration in order to compare timing accuracy.
Measurements were conducted under the following three
execution environments; each tested with 10,000 iterations:

a) Baseline: PREEMPT-RT disabled, without
SCHED_FIFO or CPU affinity.

b) With PREEMPT-RT: PREEMPT-RT enabled, without
SCHED_FIFO or CPU affinity.

c) With PREEMPT-RT + Execution Optimization:
PREEMPT-RT enabled, with SCHED_FIFO and CPU
affinity.

The relative frequency distribution of the actual sleep
durations for each case is shown in Figure 8. In case (a), the
distribution peaks around 4.2 ms with a spread of
approximately 2.5 ms. In case (b), the peak improves to 4.07
ms, but the overall distribution widens to approximately 3.45
ms, indicating an increased jitter. In case (c), the distribution
is highly concentrated around 4.005 ms, with a spread of only
20 μs, demonstrating a significant reduction in timing jitter.
These results indicate that applying PREEMPT-RT, in
combination with real-time scheduling (SCHED_FIFO) and
CPU affinity, can greatly improve timing determinism and
reduce jitters in software-based periodic processing.

The previous experiment demonstrated that timing jitter
can be reduced to approximately 20 μs. However, considering
that the minimum communication cycle defined by the
EtherCAT specification is 100 μs, further reduction in jitter is
required.

To address this issue, we propose a method to suppress
jitter by controlling the Ethernet frame transmission interval
using hardware, as illustrated in Figure 9. In the conventional
approach, shown in Figure 9(a), a software timer is used to

wait for a fixed interval after data transmission. However, this
timer-based processing introduces fluctuation, resulting in
variability in the subsequent transmission timing. In contrast,
the proposed method, shown in Figure 9(b), eliminates the use
of software-based timer counting, and enables the system to
transmit the data immediately after processing is completed.
The accurate timing control of transmission intervals is
delegated to hardware, such as a SMART NIC or an FPGA
board equipped with multiple Ethernet ports, which performs
precise hardware-based timing. This allows the system to
absorb timing jitter introduced by the software. In this

Fig. 8 Evaluation of Timing Jitter

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

4000 4100 4200 4300 4400

R
el

at
iv

e
fr

e
qu

e
nc

y

Time (us)

(a)
(c)

(b)

(a) Conventional configuration

(b) Proposed system

Fig 9 Timing Diagram of Frame Transmission

tsk

trk

tsk+1

trk+1

Data from Slaves

Timer count

Data Processing fluctuation
Procol Driver
(Software)

fluctuationData to Slaves

Data from Slaves

Data Processing

fluctuation

Procol Driver
(Software)

Hardware timer count
Ethernet frame
Interval controller

Data to Slaves

configuration, the achievable minimum cycle time is limited
by the maximum data processing time and the fixed delay of
the Ethernet Frame Interval Controller. Therefore, it is
essential to minimize the fluctuation in data processing time,
thereby reducing the maximum value. To this end, the
application of PREEMPT-RT, real-time scheduling with
SCHED_FIFO, and CPU affinity settings, as discussed earlier,
is considered effective.

VI. CONCLUSION

In this paper, we proposed and evaluated a software-based
EtherCAT protocol implementation designed for general-
purpose computing platforms, with the aim of enabling
virtualized industrial networks. Through the development of
a protocol driver and control applications, we demonstrated
stable cyclic communication and correct control of multiple
slave devices, including robotic arms.

One of the key challenges in software-based industrial
protocols is timing jitter. We addressed this by evaluating two
jitter mitigation strategies: (1) enabling real-time capabilities
in the Linux kernel using PREEMPT-RT, and (2) optimizing
the runtime environment through SCHED_FIFO scheduling
and CPU affinity. Experimental results showed that the
combination of these two techniques significantly reduced
timing jitter to approximately 20 μs.

Furthermore, to achieve sub-100 μs cycle times as required
by the EtherCAT specification, we proposed a hardware-
assisted approach for precise Ethernet frame interval control.
By offloading timing-sensitive functions to a Smart NIC or
FPGA-based controller, software-induced jitters can be
further minimized. These results suggest that a hybrid
architecture—combining software-defined control and
hardware-level timing stabilization—can provide a viable
foundation for real-time, virtualized industrial
communication systems.

REFERENCES

[1] X. Wu, L. Xie, "Performance evaluation of industrial Ethernet

protocols for networked control application," Control Engineering
Practice, Volume 84, 2019, Pages 208-217

[2] K. Ahmed, J. O. Blech, M. A. Gregory, and H. Schmidt, “Software
Defined Networks in Industrial Automation," Journal of Sensor and
Actuator Networks, vol. 7, no. 3, Art. no. 33, pp. 1–21, Aug. 2018.

[3] P. Danielis et al., "Survey on real-time communication via ethernet in
industrial automation environments," Proceedings of the 2014 IEEE
Emerging Technology and Factory Automation (ETFA), Barcelona,
Spain, 2014, pp. 1-8.

[4] J. Granelli, V. I. Munteanu, G. Rizzo, N. Ulrich, D. Siracusa, and M.
P. Anastasopoulos, “Software-defined networking solutions,
architecture and controllers for the industrial Internet of Things: A
review,” IEEE Communications Surveys & Tutorials, vol. 23, no. 3, pp.
1830–1857, 2021.

[5] E. Sakic, V. Kulkarni, V. Theodorou, A. Matsiuk, S. Kuenzer, N.
Petroulakis, K. Fysarakis, "VirtuWind – An SDN- and NFV-Based
Architecture for Softwarized Industrial Networks," Proceedings of
19th International GI/ITG Conference on Measurement, Modelling and
Evaluation of Computing Systems (MMB 2018), pp.251-261, 2018.

[6] L. Moutinho, P. Pedreiras, and L. Almeida, “A Real-Time Software
Defined Networking Framework for Next-Generation Industrial
Networks,” IEEE Access, vol. 7, pp. 164468–164479, 2019.

[7] M. A. Metaal, R. Guillaume, R. Steinmetz, and A. Rizk, “Integrated
Industrial Ethernet Networks: Time-Sensitive Networking over SDN

Infrastructure for Mixed Applications,” 2020 IFIP Networking
Conference (Networking), pp. 803–808, 2020.

[8] T. Goldschmidt, M. K. Murugaiah, C. Sonntag, B. Schlich, S. Biallas,
and P. Weber, “Cloud-Based Control: A Multi-tenant, Horizontally
Scalable Soft-PLC,” 2015 IEEE 8th International Conference on Cloud
Computing, pp. 909–916, 2015.

[9] T. Cruz, P. Simões, and E. Monteiro, “Virtualizing Programmable
Logic Controllers: Toward a Convergent Approach,” IEEE Embedded
Systems Letters, vol. 8, no. 4, pp. 69–72, 2016.

[10] M. Gundall, D. Reti and H. D. Schotten, "Application of Virtualization
Technologies in Novel Industrial Automation: Catalyst or Show-
Stopper?," 2020 IEEE 18th International Conference on Industrial
Informatics (INDIN), Warwick, United Kingdom, 2020, pp. 283-290.

[11] M. A. Metaal, R. Guillaume, R. Steinmetz and A. Rizk, “Integrated
Industrial Ethernet Networks: Time-sensitive Networking over SDN
Infrastructure for mixed Applications,” 2020 IFIP Networking
Conference (Networking) , pp. 803-808, 2020.

[12] Y. Koyasako, T. Suzuki, T. Hatano, T. Shimada and T. Yoshida,
“Demonstration of Industrial Ethernet Protocol Softwarization and
Advanced Motion Control for Full Software-Defined Factory Network,”
IEEE Access, vol. 12, pp. 104020-104030, 2024.

