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Abstract—In factory networks, various network protocols 
are used to meet strict requirements for accuracy and latency. 
Because the controllers that use these protocols are built with 
dedicated equipment, it is difficult to mix them with other 
protocols. Moreover, these controllers often rely on specialized 
software, complicating the integration of innovative 
technologies like AI. Therefore, virtualization of factory 
networks, which involves software-based factory network 
protocols and using general-purpose servers as controllers, is a 
very attractive approach. However, one of the challenges of 
software-based factory network protocols is real-time 
responsiveness.  The time fluctuation of communication packet 
intervals caused by using a general-purpose server reduces the 
accuracy and speed of control. In this paper, we implemented 
the EtherCAT protocol in software and measured the jitter. 
Through experimentation, we confirmed that our system 
achieves stable 8 ms cyclic communication, enabling consistent 
control of multiple daisy-chained slave devices. 
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I. INTRODUCTION 

In recent years, under the paradigm of Industry 4.0, the 
realization of smart factories—where all machines are 
interconnected through networks and autonomously optimize 
production processes—has gained significant attention. At the 
core of this concept lies the Industrial Internet of Things (IIoT), 
which enables seamless connectivity among industrial devices, 
sensors, and actuators, facilitating real-time data acquisition, 
analysis, and control. 

To support these functionalities, communication networks 
in industrial automation must meet extremely stringent 
requirements, such as ultra-low latency, deterministic 
behavior, precise synchronization, high availability, and 
secure data transmission. Production downtimes due to 
network delays or failures can result in immediate and 
substantial economic losses. Consequently, real-time Ethernet 
technologies such as EtherCAT, PROFINET, and EtherNet/IP 
have been widely deployed in industrial environments, 
achieving communication latencies in the sub-millisecond 
range and ensuring reliable cyclic exchange between 
controllers and field devices [1]. 

Despite their capabilities, these industrial communication 
protocols rely heavily on proprietary technologies, which 
limits their interoperability across vendors and systems. 
Moreover, they are tightly coupled to specialized hardware 

platforms, particularly Programmable Logic Controllers 
(PLCs), making system integration, migration, or 
reconfiguration costly and inflexible [2]. This rigidity imposes 
constraints on hardware reusability and modular upgrades, 
increasing the total cost of ownership. 

A wide-ranging survey by Danielis et al. [3] has classified 
and compared real-time communication technologies via 
Ethernet in industrial automation environments, highlighting 
challenges such as non-uniform protocol stacks, timing 
constraints, and implementation overheads. These 
foundational insights underline the need for more unified and 
flexible network architectures to support future IIoT 
applications. 

To address these challenges, researchers have explored the 
application of Software-Defined Networking (SDN) and 
Network Functions Virtualization (NFV) in industrial 
networks. SDN decouples the control plane from the data 
plane, enabling centralized, programmable management of 
traffic flows. This opens possibilities for dynamic 
reconfiguration, flow prioritization, and fault-tolerant routing 
in deterministic environments. A comprehensive survey by 
Granelli et al. [4] further categorizes SDN solutions and 
controller architectures for IIoT scenarios, identifying gaps in 
scalability, reliability, and real-time guarantees. 

For example, the VirtuWind project proposed an SDN- 
and NFV-based architecture tailored for mission-critical 
environments such as wind farms. This architecture introduces 
network slicing, multi-tenancy, and on-demand service 
provisioning while maintaining the stringent timing and 
reliability constraints of industrial control networks [5]. 

In parallel, the combination of SDN and Time-Sensitive 
Networking (TSN) has been proposed to support mixed-
criticality applications, allowing coexistence of time-critical 
and best-effort traffic in the same physical infrastructure [6], 
[7]. These approaches suggest that SDN can enhance the 
manageability and extensibility of industrial networks without 
compromising real-time performance. 

Meanwhile, virtualization of industrial control systems is 
gaining attention as an alternative to traditional PLCs. 
Approaches such as cloud-based soft-PLCs [8] and container-
based virtual PLCs [9] demonstrate the feasibility of 
implementing control logic on general-purpose computing 
hardware. These architectures enable dynamic software 
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updates, integration with AI-based decision-making, and 
remote or distributed control scenarios previously impractical 
with hardware-bound PLCs. However, as noted by Gundall et 
al. [10], virtualization technologies must be carefully 
evaluated in terms of their impact on timing guarantees, 
reliability, and orchestration complexity. Their study raises 
the important question of whether virtualization will 
ultimately serve as a catalyst or a show-stopper for industrial 
automation, especially in time-critical scenarios. 

At a higher architectural level, frameworks like the 
"Controller of Controllers" have been proposed to manage 
heterogeneous SDN domains. This hierarchical control design 
allows for protocol-agnostic management of industrial traffic 
across multiple technologies and vendors, contributing to 
unified industrial networking [11]. 

In response to these trends and challenges, we previously 
proposed a novel architecture that transforms industrial 
Ethernet protocols into modular software drivers executable 
on general-purpose servers [12]. Our system enables real-time 
protocol generation and motion control—e.g., for 
EtherCAT—without requiring specialized hardware or 
modifications to the physical network. Moreover, control 
logic can be written in conventional programming languages 
and integrated with advanced functionalities such as delay 
compensation and AI-based collaborative control. Since the 
system operates on standard server platforms, updates and 
extensions can be performed with minimal overhead, offering 
scalability, portability, and compatibility for modern 
industrial automation. 

This paper is organized as follows. In Section II, we 
describe the EtherCAT, which is the protocol we implemented 
in this study.  In Section III, the overview of the proposed 
system is described. In Section IV, the experimental results of 
the implemented EtherCAT protocol driver are presented. In 
Section V, the evaluation of software-induced timing jitter is 
discussed, along with strategies for its improvement. In 
Section VI, the paper is concluded.  

 

II. PROPOSED SYSTEM 

This section describes EtherCAT, a protocol developed to 
address issues of communication speed and synchronization 
control that were limitations in conventional industrial 
networks. EtherCAT utilizes standard Ethernet as its physical 
layer while adopting a uniquely optimized communication 
method for control applications, offering exceptional real-

time performance and synchronization accuracy. It was 
introduced by Beckhoff Automation in 2003 and has since 
become widely adopted as an open standard. 

Figure 2 shows a typical topology in EtherCAT network. 
EtherCAT employs a master-slave architecture, in which a 
single master PLC controls multiple slave devices such as 
sensors, actuators, and I/O modules. Physically, these slave 
devices are typically connected in a daisy-chain configuration 
using Ethernet cables. Each slave is equipped with two 
Ethernet ports—an IN port and an OUT port—and processes 
frames by receiving, handling, and forwarding them to the 
next device. This simple configuration eliminates the need for 
Ethernet switches or hubs, thereby simplifying wiring and 
minimizing communication delay.  

One of the most distinctive features of EtherCAT is its on-
the-fly processing mechanism. In this method, a single frame 
transmitted by the EtherCAT master sequentially passes 
through each slave on the network. As it passes through, each 
slave reads from or writes to its designated byte region in real 
time, without stopping or storing the frame. The processing is 
completed within a time frame of several tens to hundreds of 
nanoseconds. This mechanism enables ultra-low 
communication latency, reduces overall header overhead by 
eliminating individual responses, and ensures highly stable 
communication timing. This on-the-fly mechanism stands in 
stark contrast to conventional polling-based communication 
systems, where the master must communicate with each slave 
individually. It is a core technology that defines the high-
performance characteristics of EtherCAT. 

  
Fig. 2  EtherCAT Network Topology 
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Fig. 1 Proposed Architecture 
 



 

An EtherCAT frame can contain multiple datagrams 
within a single Ethernet frame. Each datagram is capable of 
accessing a specific slave or memory address range. This 
architecture enables simultaneous updates and distributed 
access in multi-node environments, contributing to the 
protocol’s efficiency and scalability. 

 

III. ETHERCAT PROTOCOL 

The proposed system is illustrated in Fig. 3. A general-purpose 
server, acting as the EtherCAT master, is connected to 
multiple slaves in a daisy-chain topology. The EtherCAT 
master consists of two main components: a Control 
Application, which computes commands to be issued to the 
slaves (such as robotic arms), and a Protocol Driver, which 
generates the EtherCAT protocol frames. Although our 
primary objective is to complete the protocol driver on the 
master side, we also implemented a protocol driver on the 
slave side for experimental purposes. Data exchange between 
the Control Application and the Protocol Driver is carried out 
via UDP communication within the server. 

Figure 4 shows the flowchart of the transmission process 
in the protocol driver. The protocol driver is composed of two 
multithreaded components: the Data Receive Handler, which 
receives UDP packets from the Control Application, and the 
EtherCAT Frame Generator, which transmits EtherCAT 
frames outside the server. When the Data Receive Handler 
receives a UDP packet, it extracts the data from predefined 
positions in the packet and stores it in memory. The EtherCAT 
Frame Generator periodically sends EtherCAT frames at fixed 
intervals defined by the protocol, regardless of whether new 
data has been received from the Control Application. If data is 
present in memory, it is copied into the appropriate datagram 
region of the EtherCAT frame before transmission. 

 We implemented the EtherCAT protocol driver using the 
Go programming language and C programming language 
respectively. In the protocol driver, we implemented four 
EtherCAT commands: Logical Memory Write (LWR), 
Logical Memory Read (LRD), Broadcast Read (BRD), and 
Auto Increment Write (APWR). The LWR command is used 
to send data from the master to the slaves, while the LRD 
command retrieves data, such as sensor values from the slaves 
to the master. The BRD command is employed to notify the 
master of any status abnormalities in the slaves, and the 
APWR 

  command is used for issuing initial configuration 

instructions to the slaves. 

In the EtherCAT protocol, since all slaves receive the same 
Ethernet frame from the master through a daisy chain 
connection, it is necessary to specify where each slave's input 
and output are located within the Ethernet frame. Therefore, 
we propose incorporating this initial configuration into the 
EtherCAT protocol driver. 

command is used to inform each slave of the specific byte 
offsets in the Ethernet frame where it should read input data 
from and write output data to. After the initial configuration, 
the EtherCAT protocol driver will periodically send LRD, 
LWR, and BRD commands to enable communication between 
the master and multiple slaves. 

 

IV. ETHERCAT PROTOCOL IMPLEMENTATION  

Figure 5 shows a visual representation of the experimental 
setup, including the server for EtherCAT master, Raspberry Pi 
4 for slaves and image transmission terminal, and the robotic 
arm. The robotic arm utilized in this study is the Lite 6 from 
uFactory, while the EtherCAT module employed is the 
EasyCAT developed by AB&T. The server is running the 
Ubuntu 22.04 LTS operating system. The network standard 
uses 100BASE-TX, which is aligned with the EtherCAT 
specifications.  

 

Fig. 5 Experimental System Setup 
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Fig. 4 Protocol Driver Flowchart 
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To demonstrate that communication with multiple slaves 
is functioning correctly, each slave is running a different 
program. One is Robotic Arm Control, and the other is 
Calculation. The Image Recognition and Control Application 
running on the master system receives image data from an 
image transmission terminal and performs object detection 
using YOLOv3 (You Only Look Once version 3). Upon 
recognizing a playing card, the application extracts its 
coordinate information and transmits it to the slave device via 
the EtherCAT protocol. On the slave side, the Robotic Arm 
Control Program interprets the received coordinates, actuates 
the robotic arm to pick up the identified card, and transports it 
to a predefined location. The Calculation program within 
Slave 2 takes an input X provided by the master and returns 
an output Y according to the formula Y=255 − X. The master 
increments X every 8 ms frame. 

The experimental results are shown in Figs. 6 and 7. Figure 
6(a) presents the packet capture results for transmission and 
reception on the master server. It was confirmed that packets 
from the master's MAC address 00:e0:4c:63:52 were sent at 
approximately 8 millisecond intervals. It is also confirmed that 
packets sent from the master are immediately followed by 
packets received from the slave (MAC address 
02:e0:4c:63:52).  

In this experiment, we set the data area within the LRW 
and LRD commands to 32 bytes per slave. In the LWR 
command, the first 12 bytes of the data represent the target 
coordinate values (x, y, z) in single-precision floating-point 
format. The value 0xd9 at the 33rd byte in this figure 
represents the data X sent to Slave 2. The datagram of the 
frame from the slave to the master following the EtherCAT 
frame is shown in Fig. 6(b). The data in the LRD command 
has been overwritten, with the first 12 bytes representing the 
current xyz coordinates of the robotic arm. The value at the 
33rd byte is the return value from Slave 2, which, due to the 
internal processing time of Slave 2, is Y=0x27 in response to 
the previous input value X=0xd8.  

Figure 7(a) illustrates the time-series changes in the 
coordinates of the robotic arm when two playing cards are 

placed. It was confirmed that the robotic arm operates based 
on the data transmitted via the EtherCAT protocol. 

Figure 7(b) shows a 3D plot of the trajectory 
corresponding to the coordinate data. The robotic arm moves 
from the start position to the location of the first card (1), (2), 
then transports the card to a predefined location (3), and 
finally returns to the start position (4), (5). A similar sequence 
of operations was also confirmed for the second card. 

 

V. EVALUATION OF TIMING JITTER   

One of the critical challenges in implementing the protocol 
driver in software is timing jitter. In general-purpose operating 
systems such as Linux, the kernel employs time-sharing to 
manage various processes. As a result, interrupt handling and 
task scheduling may cause temporary suspension of the target 
process, introducing fluctuations in the actual execution 
timing. This inherent behavior of the OS leads to non-
deterministic delays, which become particularly problematic 
in systems requiring precise timing control. 

In the proposed system, the component that demands the 
highest level of timing accuracy is the Sleep process within 
the EtherCAT Frame Generator, as illustrated in Figure 4. If 
the sleep duration deviates from its intended value, the timing 
of EtherCAT frame transmissions becomes irregular. Such 
jitter in frame intervals may, in some cases, be interpreted by 
the network as a protocol violation, potentially causing the 
entire system to enter a fault state or halt unexpectedly. 

 
(a)  

 

 
(b)  

Fig. 7 Robotic Arm Results (a) coordinate,  
(b) trajectory 
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Fig. 6 Packet Capture Result 



Given the severity of this risk, the first step in our 
evaluation was to quantitatively assess the accuracy of the 
sleep duration in the frame transmission logic. By doing so, 
we aim to identify the extent of timing jitter introduced by the 
software and determine whether corrective measures are 
necessary to maintain network reliability and system stability. 

This paper evaluates two approaches for reducing timing 
jitter. The first approach involves real-time enhancement of 
the Linux operating system. PREEMPT-RT (PREEMPT 
Real-Time Patch) is a patch set that extends the Linux kernel 
for real-time processing. By enabling fine-grained control of 
kernel preemption, it significantly improves both the 
determinism and responsiveness of task execution. In the 
PREEMPT-RT kernel, spinlocks used for mutual exclusion 
are replaced with mutexes, allowing preemption across the 
entire kernel. Additionally, part of the interrupt handling (ISR) 
is implemented as kernel threads, enabling more flexible 
priority control and scheduling between user-space processes 
and kernel tasks. As a result, PREEMPT-RT makes it possible 
to achieve sub-millisecond-level jitter control and stable 
periodic execution, which are difficult to realize in a standard 
Linux environment. 

The second approach is optimization of the real-time 
execution environment. By applying the SCHED_FIFO 
scheduling policy and assigning a high priority to the process 
(priority level 80 in our experiment), we minimized 
interference from other processes. Furthermore, by setting 
CPU affinity, the target process was pinned to a specific CPU 
core. This configuration avoids context switching between 
CPU cores and cache misses, enabling more stable timing 
control. These two techniques together are expected to 
suppress jitter and improve the determinism of time-sensitive 
operations in software-based periodic processing. 

In this experiment, we implemented a C-language 
program to execute a 4 ms sleep operation and measured the 
actual sleep duration in order to compare timing accuracy. 
Measurements were conducted under the following three 
execution environments; each tested with 10,000 iterations: 

a) Baseline: PREEMPT-RT disabled, without 
SCHED_FIFO or CPU affinity. 

b) With PREEMPT-RT: PREEMPT-RT enabled, without 
SCHED_FIFO or CPU affinity. 

c) With PREEMPT-RT + Execution Optimization: 
PREEMPT-RT enabled, with SCHED_FIFO and CPU 
affinity. 

The relative frequency distribution of the actual sleep 
durations for each case is shown in Figure 8. In case (a), the 
distribution peaks around 4.2 ms with a spread of 
approximately 2.5 ms. In case (b), the peak improves to 4.07 
ms, but the overall distribution widens to approximately 3.45 
ms, indicating an increased jitter. In case (c), the distribution 
is highly concentrated around 4.005 ms, with a spread of only 
20 μs, demonstrating a significant reduction in timing jitter. 
These results indicate that applying PREEMPT-RT, in 
combination with real-time scheduling (SCHED_FIFO) and 
CPU affinity, can greatly improve timing determinism and 
reduce jitters in software-based periodic processing. 

The previous experiment demonstrated that timing jitter 
can be reduced to approximately 20 μs. However, considering 
that the minimum communication cycle defined by the 
EtherCAT specification is 100 μs, further reduction in jitter is 
required.  

To address this issue, we propose a method to suppress 
jitter by controlling the Ethernet frame transmission interval 
using hardware, as illustrated in Figure 9. In the conventional 
approach, shown in Figure 9(a), a software timer is used to 

wait for a fixed interval after data transmission. However, this 
timer-based processing introduces fluctuation, resulting in 
variability in the subsequent transmission timing. In contrast, 
the proposed method, shown in Figure 9(b), eliminates the use 
of software-based timer counting, and enables the system to 
transmit the data immediately after processing is completed. 
The accurate timing control of transmission intervals is 
delegated to hardware, such as a SMART NIC or an FPGA 
board equipped with multiple Ethernet ports, which performs 
precise hardware-based timing. This allows the system to 
absorb timing jitter introduced by the software. In this 

 
Fig. 8 Evaluation of Timing Jitter 
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Fig 9 Timing Diagram of Frame Transmission 
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configuration, the achievable minimum cycle time is limited 
by the maximum data processing time and the fixed delay of 
the Ethernet Frame Interval Controller. Therefore, it is 
essential to minimize the fluctuation in data processing time, 
thereby reducing the maximum value. To this end, the 
application of PREEMPT-RT, real-time scheduling with 
SCHED_FIFO, and CPU affinity settings, as discussed earlier, 
is considered effective. 

 

VI. CONCLUSION 

In this paper, we proposed and evaluated a software-based 
EtherCAT protocol implementation designed for general-
purpose computing platforms, with the aim of enabling 
virtualized industrial networks. Through the development of 
a protocol driver and control applications, we demonstrated 
stable cyclic communication and correct control of multiple 
slave devices, including robotic arms. 

One of the key challenges in software-based industrial 
protocols is timing jitter. We addressed this by evaluating two 
jitter mitigation strategies: (1) enabling real-time capabilities 
in the Linux kernel using PREEMPT-RT, and (2) optimizing 
the runtime environment through SCHED_FIFO scheduling 
and CPU affinity. Experimental results showed that the 
combination of these two techniques significantly reduced 
timing jitter to approximately 20 μs. 

Furthermore, to achieve sub-100 μs cycle times as required 
by the EtherCAT specification, we proposed a hardware-
assisted approach for precise Ethernet frame interval control. 
By offloading timing-sensitive functions to a Smart NIC or 
FPGA-based controller, software-induced jitters can be 
further minimized. These results suggest that a hybrid 
architecture—combining software-defined control and 
hardware-level timing stabilization—can provide a viable 
foundation for real-time, virtualized industrial 
communication systems. 
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