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Abstract—Embedded edge devices face strict energy and
size constraints for IoT and WSN applications. Because of
this, advances have been made to enable state-of-the-art edge
neural network models, such as MobileNetv2, to decrease their
peak memory requirements to tens to hundreds of kilobytes
using network architecture search tools and highly optimized
libraries. However, optimization work in this space has been
limited to a specific set of microcontroller cores including
the recently developed embedded RISC-V processors that can
take advantage of the highly parallel nature of machine learn-
ing workloads. This work explores the optimization of the
TinyEngine inference library for the T908 vector processor
as a reference for embedded vector processor designs. The
vectorization achieved a 2.83x speedup relative to a scalar
portable version of TinyEngine running on the same core,
without a corresponding fall in average accuracy. In addition,
replacing floating-point quantization with fixed-point operations
is shown to have only a minor 3-4% reduction in Top 5 accuracy
with negligible impact on performance, indicating that integer-
only vector implementations can also be viable for embedded
machine learning workloads.

Index Terms—RISC-V, vector, TinyEngine, edge computing

I. INTRODUCTION

Advances in embedded computing have led to the rise of
Wireless Sensor Networks (WSN) and the Internet of Things
(IoT). As these device applications scale into larger and more
interconnected networks dealing with more complex data,
it becomes more difficult to deal with the volume of data
required. Tasks such as image recognition and visual wake
words that are used to detect objects are now being offloaded
onto individual nodes. This has led to the rise of the field
of Tiny Machine Learning (TinyML) [1], which focuses on
making these complex tasks work on hardware with strict
performance and energy limits, which in turn limit their
computational power and memory capacity.

Despite the complexity of state-of-the-art neural network
(NN) models for applications such as image recognition,
these tasks have been shown to be viable in microcontrollers
[2]. Since TinyML generally works with lower quality data
due to resource constraints, a viable approach to the prob-
lem has been to reduce the complexity of the problem by
trading input size and model accuracy for a smaller and
less compute-intensive model. This is further improved by
using a Network Architecture Search (NAS) to find the
optimal network architecture given a specific set of resource
constraints [3]–[5]. With these trade-offs, it is now possible
to fit an image recognition model targeting the ImageNet-1k
dataset within 256kB of SRAM, placing it well within the
memory budget of commercial microcontrollers [6].

With NN models now reduced in scope and scale, op-
timizing them for the target hardware is now increasingly
important. For example, performance improves by compiling
models directly for the hardware instead of relying on an
interpreter layer. It is worth noting that, in MCUNet, most
of the performance gains (ie. latency reduction) made against
the baseline TF-Lite Micro framework can be explained by
compiling with the Arm CMSIS-NN library [3].

Pushing the envelope even further in terms of both perfor-
mance and energy efficiency means leveraging the massive
increase in variety of specialized embedded processors. Hard-
ware is informed by previous research on the characteristics
of NN workloads, leading to novel embedded platforms with
features ranging from multiple cores [7], [8], larger vector
SIMD units [9], [10], and even dedicated accelerators [8].
These features lead to performance and efficiency gains
above and beyond what is possible with the libraries opti-
mized earlier [10] for more general-purpose microcontrollers.

In this work, we aim to add to this research by optimizing
an existing optimized embedded machine learning library and
determine what we can learn from it to inform future em-
bedded vector processor design, to better match the demands
of machine learning workloads.

II. BACKGROUND AND RELATED WORK

A. Embedded Neural Network Libraries

Embedded NN libraries support less computationally
complex NN layers to ensure that inference tasks fit
in microcontroller-class hardware. For example, the open-
source TensorFlow Lite Micro library supports commonly
used operations such as convolutions and simpler merging,
pooling, and activation layers [11]. On top of this, tech-
niques such as quantization and patch-based inference reduce
computational complexity and memory requirements while
seeking to take advantage of the strengths of the hardware.

1) Quantization: Quantization involves replacing floating-
point weights and activations with integers, resulting in
smaller model sizes and memory requirements. This also
allows smaller microcontrollers that only have integer ALUs
to run much more efficiently than if these had to rely
on expensive floating-point software subroutines. In return,
accuracy is reduced due to less precise integers being used in
place of floating-point operations. Considering that smaller
models are required to fit on microcontrollers regardless, this
is an acceptable trade-off.
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TABLE I
ADD TABLE CAPTION.

Library FANN-on-MCU [12] TinyEngine [3] TinyTS [5] PULP-NN [13]
Target Armv7-M/RISC-V Armv7-M Armv7-M RISC-V
Quantization 8-bit 4/8-bit 8-bit 1/2/4/8-bit
Patch-Based Inference No Yes Yes No
SIMD Optimizations Yes Yes Yes Yes

Although memory requirements and computational power
are reduced further by smaller quantization levels [13], sup-
port is limited by the target processor. For most libraries that
target various Arm Cortex-M processors, the lower limit is 8-
bit quantization. While more aggressive (e.g. 4-bit) quantiza-
tion still results in smaller model and activation sizes, the lack
of support for 4-bit operations incurs processing overheads
from converting 4-bit weights and inputs to supported integer
datatypes and back. There is a resulting upper bound on the
memory savings from quantization, which is typically from
a 32-bit floating point format to 8-bit integers (int8), or 75%.

2) Patch-Based Inference: To reduce memory require-
ments without shrinking models even further, particularly in
terms of peak activation memory consumption, the earlier
layers of NN models can be split into smaller chunks and
evaluated independently. These smaller chunks require a
smaller activation buffer, and their outputs can be joined
before later layers, after which the NN model can operate
normally. For example, MCUNetv2 [14] simply divides ear-
lier layers into ”patches”, which are independent portions
of the input image, resulting in an 8x reduction in peak
memory for the MobileNet-V2 model, at the cost of 20%
additional inference latency relative to MCUNetv1. Since
patch generation is done at compile time, more memory
bottlenecks can be resolved by adding additional levels of
patches targeting later layers.

However, this results in a great deal of duplicated multiply-
accumulate operations, due to overlaps present between each
patch. By dedicating an additional buffer in memory to hold
reused calculations, these overlaps can be resolved, resulting
in a 60-80% speedup over MCUNetv2.

Moreover, tensors within layers can also be treated as a
packing problem and dynamically divided and rearranged
such that inference throughput is maximized within a set
memory budget, which is accomplished through a virtual
memory management system.

Although all of these approaches work to reduce memory,
dividing layers presents an opportunity cost in terms of par-
allelization. As divisions become more granular, it becomes
more difficult to amortize the overhead presented by function
calls, loops, and other necessary control flow structures.

3) Microarchitectural Optimizations: State-of-the-art em-
bedded NN libraries typically target the Arm Cortex-M
family of cores [3], [5], [12], [15], as these are designed
for embedded applications and are commonly found on
microcontrollers. This core family is supported by the Arm
CMSIS-NN library [16], providing a reasonable starting point
for any further optimization work. In particular, the Cortex-
M4 and Cortex-M7 cores tend to be used for published

results. Both cores feature support for packed SIMD, which
is used extensively in convolution kernels and underlying
matrix multiplications. This allows for supporting quantized
int8 operations and leveraging parallelism in NN workloads.

At the time of this work, there is a lack of work dealing
with NN libraries targeting Cortex-M cores that support the
Armv8-M ISA. This is a missed opportunity for applications
that can now benefit from the M-Profile Vector Extension,
which features wider SIMD than in the Cortex-M4 and
Cortex-M7 [17].

There has also been work on optimizing NN inference
libraries for other processors, mostly implementing various
flavors of the RISC-V Instruction Set Architecture (ISA).
These include processors that implement techniques such
as multicore processing [12], [13] , which leverage the
massively parallel nature of NNs. These resulting in [set
number] performance uplift for NN kernels, which even
demonstrate improved energy efficiency compared to Arm
Cortex-M based devices. Prior exploration in this space is
still limited, even though suitable embedded processors [10],
[18] demonstrate significant performance and efficiency gains
for NN kernel workloads. This highlights the potential for
more performance gains by taking advantage of parallelism
through more specialized processor design.

B. SIMD/Vector Computing in RISC-V

As a free, open, and modular ISA, RISC-V has been used
to develop embedded processors specifically to leverage the
parallel nature of NN workloads. SIMD development on
embedded RISC-V processors can be broadly split into two:
those implementing custom SIMD extensions, and RISC-V
Vector Extension (RVV) implementations.

1) SIMD on RISC-V: Unlike Arm v6-M and later versions
of the Arm M-Profile ISA, there is no ratified packed SIMD
extension, although the P extension specifications have been
in development since 2019 [19]. As such, packed SIMD
efforts take the form of custom extensions [7] which have
also been targets for RISC-V NN libraries [12], [13].

It is worth noting that, because of the freedom afforded
by the RISC-V ISA, various SIMD architecture designs
have been subjects of exploration, which include packed
SIMD, but also include multicore processing managed by a
controller core [7], [8], automatic control flow management
[7], [8], and streaming co-processors [18].

All of these additions serve to leverage neural network
parallelism while attempting to free up memory bandwidth
by reducing the instructions to fetch, but two bottlenecks ex-
ist: the width of scalar registers, limiting how many elements
can be processed per instruction, and the 32-bit instruction



width, which limits how complex operations can be. This
leads quite naturally to the evolution of embedded multicore
clusters closer to vector processor cores, such as by forcing
cores to execute the same instructions at the same time to
minimize instruction fetches [20].

2) The RISC-V Vector Extension: The RISC-V Vector Ex-
tension (RVV) is a family of vector extensions that add vector
SIMD and architectural vector registers to the RISC-V ISA.
It features a configurable vector programming model, where
the number and datatype of vector elements can be controlled
independently of the vector instructions themselves. RVV
also allows up to 8 vector registers to be grouped together,
expanding vectors past vector register width alone [19].

The minimal subset of RVV is Zve32x, which only sup-
ports integer operations with an element width of up to 32
bits. The minimum vector register length and ALU length
can both match the scalar register width (32 bits), but vector
register groups still allow for up to 8x less instructions
to be executed than using the scalar ISA, allowing for
truly minimal vector implementations [21] to demonstrate
significant speedup compared to purely scalar cores, even
when hardware reuse is maximized.

Among other existing RVV implementations, Spatz [10] is
explicitly aimed at embedded applications. Vector chaining
between its three vector units (load/store, arithmetic, and
permutation) is used to achieve close to optimal performance
on NN kernels through interleaved instructions.

A later version increased its throughput by adding 256-
bit vector registers and four floating-point units per core
[22]. Each floating-point unit is nearly as large as the vector
register file itself, on top of floating-point operations being
more expensive than memory accesses. The cost of floating-
point support highlights an opportunity for smaller, more
efficient vector cores if floating-point requirements can be
removed entirely.

III. TINYENGINE VECTORIZATION

For this work, three reference MCUNet models (MBV2-
w0.35, MCUNet-10fps, MCUNet-512kB) [6] are used to
profile scalar and vectorized library kernel functions. These
were chosen to cover every layer used in inference across
all pretrained MCUNet models. Patch-based inference is not
evaluated for the reasons outlined in the previous section.

A. Target Platform

The CanMV-K230 board is chosen as the target plat-
form, which has two onboard T-Head C908 CPU cores.
In particular, this work targets Core 2, which supports the
full RISC-V Vector Extension v1.0 spec. While this is not
a microcontroller class processor, it has the same vector
register width (128 bits) Arm MVE implementations [17].
More notably, because of its split 64-bit vector execution
units which can chain two dependent operations together
[23], its vector processing is actually in line with dual-beat
MVE implementations.

B. Scalar Reference Implementation

Since the provided GCC version in the K230 SDK does not
support the API, Clang-19 is instead chosen as the compiler.
All scalar-only and vectorized versions of the port are built
with the -O3 flag. Scalar-only versions are built without the
vector extension in the target architecture.

The scalar reference was initially developed using an
STM32F746G-based microcontroller board. The internal im-
plementation of NN layer functions was kept as close to one-
to-one as possible in an effort to match model functionality
and accuracy and keep them comparable to the original
MCUNet results. However, model accuracy was observed to
be affected mostly by quantization and rounding behavior,
which freed other portable code up to being optimized, as
shown in the 1x1 convolution function example below, with
an input size of 12x12x64.

Fig. 1. Pointwise Convolution Function Speedup

In the original TinyEngine implementation, sign-
extensions were interlaced due to the use of the SXTB16
instruction, resulting in interleaved padded inputs. These
are first replaced with non-interleaved padding, and then
followed up by replacing all intrinsics with portable C code,
resulting in an around 2.4x speedup, which is then used as
the new scalar baseline.

Vector support was then enabled to leverage autovectoriza-
tion, to evaluate whether scalar code is accelerated. However,
the scalar reference is not particularly amenable to brute-
force vectorization due to the limited number of channels per
loop iteration (4). As a result, the autovectorized function
actually fares slightly worse, as it cannot yet fully take
advantage of both software and hardware: the underlying or-
ganization of activations in memory and of the configurability
of RVV.

C. Kernel Vectorization

Kernels used in the MCUNet model repository broadly use
four categories of layers: pointwise convolution, depthwise
convolution, average pooling, and add layers to accomplish
skip connections. Of these, both types of convolution layers
make the up the most of the layers and most of the exe-
cution time in the scalar references. The internal memory



organization for TinyEngine uses an HWC (height-width-
channel) format for both activations and kernels. This makes
pointwise convolutions, especially those dealing with 1x1
kernels, relatively trivial to vectorize.

Each loop iteration processes the lesser between the max-
imum vector length or the number of remaining channels.
This way, only one loop structure is needed to process all
channels. Only one scalar step is needed: reducing the vector
elements down to a scalar sum.

By the end of the loop, v sum contains partial sums across
all of its elements, so a sum reduction is needed to get the
final sum. Because of how reduction operations work, it is
impractical to vectorize the steps afterwards without using
an additional buffer to hold all the sums.

This process is the common baseline for all vectorized
kernels. More bespoke optimization is done for other kernels.

1) Segmented Load-Store Operations: On RVV, seg-
mented loads allow a single load operation to split its results
over a group of 2-8 registers. This enables vectorization of
2x2 and larger kernels, provided that the address offset is low
enough, such as for RGB pixel inputs for all model inputs.

2) Slide Operations: For depthwise convolutions, using
vector slides to effectively move the convolution window
allows for great operand reuse. When combined with seg-
mented loads, this allows for continuous multiply-accumulate
operations on the limited kernel strides (1 or 2) that
TinyEngine kernels do work with. In practice, however,
operand reuse for depthwise layers is limited by the size
of the kernel without setting aside more buffers for partial
sums.

3) Full Integer-Only Quantization: TinyEngine has one
layer used in all models that requires floating-point support,
even when the floating-point requantization build option is
turned off. The add layer (add fpreq) uses FP32 scaling
and offsets, and does not have a corresponding integer-only
counterpart in the library.

RVV has vectorized fixed-point integer operations to en-
able quantization, the output of which saturates rather than
overflows. Converting the add layer to use these fixed-
point operations would remove the need for a floating-point
unit, thus allowing smaller vector implementations to run
TinyEngine.

IV. VECTORIZED MODEL PERFORMANCE

Individual model inference latency and accuracy are shown
in Table II. Note that the baseline results do not have
comparable inference runtime figures since these are taken
from runs using STM32F7 microcontrollers.

The models all received significant performance gains
from optimized vector code, with a geometric mean of 2.83x
speedup relative to their respective scalar reference versions
without significant changes in model accuracy. Meanwhile,
relying on compiler autovectorization did not result in any
major changes in performance, despite the generation and
use of vector instructions within NN kernel functions’ inner
loops.

The replacement of the last floating-point scaling in
TinyEngine with equivalent 32-bit fixed-point operations

resulted in a slight drop in accuracy, which is expected
since this is essentially carrying out quantization that the NN
models were not trained for. There is also an average speedup
of 1%, but the small scale of this performance boost is partly
due to add operations comprising a relatively small part of
each inference.

In theory, since each vector unit in the C908 processor
is 64 bits wide, the theoretical performance gain should be
somewhere in the range of 4x, since that is the ratio of 16-
bit elements that the vector processor can handle per cycle
than a scalar RISC-V counterpart. However, this theoretical
speedup was not met, which can be partly explained by the
characteristics of the models selected and of the convolution
layers.

Fig. 2. Pointwise (left) and Depthwise (right) Speedup vs Input Dimensions

When looking at layer performance with respect to the
input size (in pixels), there is clear performance degradation
that happens to depthwise layers as the input size drops below
5 by 5. This is because of the internal CHW (channel-height-
width) organization for depthwise kernels, which result in
vector registers that are not filled up. Unfortunately, the C908
core does not reduce its vector latency when this happens
[23], so the overhead of using the vector extension outweighs
whatever additional SIMD processing can be done. For
this reason, a rewrite of depthwise convolutions away from
CHW for smaller input sizes is recommended. Alternatively,
since this implementation relies heavily on slow vector slide
operations for relatively small vector lengths, this could also
be taken as a recommendation to focus on smaller, faster
permutations in vector processor designs.

Fig. 3. Pointwise (left) and Depthwise (right) Speedup vs Input Channels

Pointwise convolution performance increases with respect
to the number of input channels, but performance saturates
after a certain point, which can be attributed to the kernels
being starved for memory. Conversely, this also means that
the first layer, which has to take on 3-channel RGB inputs,
is also the most difficult to vectorize.



TABLE II
SCALAR AND VECTOR INFERENCE RESULTS

Model (input size) MBv2-w0.35 (144px) MCUNet-10fps (48px) MCUNet-512kB (160px)
Target Top5 Acc (%) / Time (ms) Top5 Acc (%) / Time (ms) Top5 Acc (%) / Time (ms)
Baseline [6] 73.8% / – 66.3% / – 88.4% / –
Scalar Reference 71.0% / 103.5 58.0% / 26.52 82.8 % / 283.7
Autovectorized Scalar Reference 71.7% / 103.5 58.3% / 26.24 82.3% / 284.4
Vectorized 71.4% / 42.12 60.3% / 9.146 80.9% / 88.38
Vectorized Fixed-Point 68.4% / 41.90 58.4% / 9.135 76.1% / 88.06

V. CONCLUSION

This work demonstrates that there are significant perfor-
mance gains that can be unlocked through vectorization for
embedded machine learning workloads, with a geometric
mean of 2.83x relative to a scalar port to the same C908
core on the CanMV-K230 board. In particular, the RISC-V
Vector Extension is shown to work well for this purpose,
as features such as its dynamic configurability, segmented
load operations and other features that enable greater operand
reuse and efficiency. All this comes in spite of bottlenecks
that come in some layers that would otherwise require an
overhaul to get around. However, as shown by the relatively
poor results from compiler autovectorization, vectorization
alone is not a solution that will work independently of an
understanding of the underlying models and kernels.

An important finding of this work is that floating-point
requantization and scaling can be replaced with equivalent
RVV fixed-point operations for inference without major
degradation in model performance or accuracy. This shows
that smaller, more efficient integer-only RISC-V Vector pro-
cessors can be a viable option.
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