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Abstract—In this paper we develop a vision-based Hand
Gesture Recognition (HGR) system for real-time computer
mouse control by leveraging alternate deep learning techniques,
post-processing methods, and dataset refinements. The goal is to
enhance classification accuracy, reliability, and system usability
for real-time applications. By integrating Google’s Mediapipe
Hands for hand tracking and incorporating dynamic gesture
recognition techniques, the system extracts raw skeleton data
for two main classifiers: a static hand pose MLP classifier for
precise frame-by-frame classification and a dynamic gestures
classifier using late fusion temporal transformers window pre-
diction of dynamic gestures mapped to computer mouse macro
actions. The system achieved an overall accuracy 85.86% and
a Levenshtein accuracy of 73.86%, indicating an optimized,
more efficient, and reliable HGR system that offers improved
functionality and enhanced usability in practical applications.

Index Terms—yvision-based hand gesture recognition, multi-
layer perceptron, temporal transformers

I. INTRODUCTION

Recognizing hand gestures in real time is crucial for
creating intuitive and natural interfaces—especially in con-
texts where gestures may be the most practical or even
the only viable form of interaction. This is particularly
relevant in scenarios such as sign language for the deaf [1],
communication for the elderly [2], and interaction in sterile
medical environments, such as for surgeons needing to signal
or access digital information while performing operations
[3]. These examples underscore the diverse applications and
significant motivations for developing a real-time dynamic
hand gesture recognition (HGR) system. While sensor-based
approaches using accelerometers, gyroscopes, and ECG sen-
sors [4] have shown promise, the need to attach hardware to
the user’s body makes them cumbersome and less intuitive.
In contrast, vision-based HGR systems—which use only
a standard camera input—enable more natural, contactless
interaction without requiring any wearable devices.

Beyond medical and accessibility use cases, real-time
gesture recognition has broad applicability in professional
environments where traditional touch- or voice-based input
may be limited or impractical. For instance, mechanics and
technicians with gloved or oil-covered hands may need to
consult diagrams or control systems without contaminating
surfaces. In cleanrooms, biosafety labs, or manufacturing
plants, maintaining sterility or avoiding cross-contamination
similarly precludes physical interaction with input devices.
In emergency response, construction, or field operations,
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protective equipment and noisy environments make voice
commands unreliable. In all these settings, gesture-based
interfaces offer a hygienic, silent, and intuitive interaction
modality that preserves workflow continuity.

Despite the promise shown by deep learning-based HGR
systems, developing robust, real-time gesture recognition
remains a significant challenge. Many existing models are
designed for offline classification and rely on large annotated
datasets and computationally intensive architectures, such
as CNNs and RNNs. These approaches often struggle to
meet the low-latency and efficiency requirements of real-
time deployment, particularly on resource-constrained or
edge devices. Real-time HGR systems must contend with
lighting variations, occlusions, diverse hand orientations, and
environmental noise, all while delivering fast and accurate
performance. Achieving this requires lightweight and respon-
sive models, robust hand tracking, and system-level resilience
to misclassifications [5]. When properly implemented, such
systems can enable inclusive, hands-free interaction that
improves productivity, accessibility, and safety across a wide
range of application domains.

In this work, we propose a hybrid framework that com-
bines hand-crafted features—which are lightweight and in-
terpretable—with a late-fusion Transformer architecture that
models spatiotemporal dependencies across feature streams.
The system enables hands-free interaction through generic
mouse actions and intuitive macros. Our design prior-
itizes real-time performance, emphasizing fast inference,
lightweight classifiers, and responsiveness, while maintaining
tolerance to misclassifications. We show that such a system
can serve as a practical alternative to conventional input
methods across diverse professional domains.

A. Related Work

Hand gesture recognition (HGR) has long been explored as
a promising interaction modality for human-computer inter-
action (HCI), particularly in environments where traditional
inputs like touch, voice, or gaze are limited. Early systems
relied on rule-based or vision-based techniques using colored
gloves or fiducial markers, but these approaches were quickly
superseded by deep learning models that provided superior
accuracy and generalization. Convolutional neural networks
(CNNs), recurrent neural networks (RNNs), and 3D CNNs
have been widely used to classify gestures from RGB, depth,



and infrared video streams. Some systems incorporate pose
estimation models such as MediaPipe Hands or OpenPose to
extract skeletal representations prior to classification [9].

Recent studies have explored various modalities to im-
prove gesture recognition performance, including optical
flow [6], depth [7], and infrared imaging [8]. While these
modalities provide rich spatiotemporal information, they are
computationally expensive and require large datasets, making
them difficult to deploy on resource-constrained devices.
To address this, some works have turned to skeletal data,
using lightweight tracking models to extract joint coordi-
nates, resulting in a more compact and robust representation
[10]. These skeletal features are suitable for training with
deep learning models such as 1D-CNNs, 3D-CNNs, and
Transformer-based architectures.

1D-CNNs are effective for modeling temporal sequences
of skeletal features, while 3D-CNN’s capture both spatial and
temporal information from gesture evolution. For example,
Liu et al. [11] used 3D-CNNs to process embedded skele-
tal hand postures across time. However, these approaches
often fall short in modeling long-term dependencies be-
tween frames. Transformers, which employ self-attention
mechanisms, have recently gained traction for skeleton-based
gesture and action recognition due to their ability to model
temporal relationships across frames more effectively.

Plizzari et al. [10] proposed a spatial-temporal transformer
that captures both intra-frame and inter-frame dependencies
efficiently with fewer parameters—making them better suited
for real-time applications. The network uses self-attention
to understand how different body parts interact within a
single frame and how these interactions evolve over time
across multiple frames. Moreover, transformers can effec-
tively achieve good performance with fewer parameters.
Transformer-based systems can be lightweight, efficient, and
more suitable for real-time applications with limited compu-
tational resources.

Using HGR for human-computer interaction (HCI) sys-
tems that utilize hand gestures for mouse control was done
in [9]. In this study a sliding window approach based on
Kopuklu’s [5] with two deep learning models as a gesture
detector and a gesture classifier. This simultaneous hand
gesture detection and classification is implemented for mouse
control. The architecture specifically used an RGB detector,
MediaPipe Hands, and skeleton classifier for continuous
HGR. Mouse actions are mapped to corresponding gestures
from the IPN Hand dataset that are executed when the
algorithm accurately detects a gesture.

Despite the high accuracy achieved by these classifiers,
they are still room for improvement despite the high accuracy
and any small misclassification of a gesture will affect the
fluidity and performance of the HGR. The existing HGR
system architecture can be further improved to be tolerant
to misclassifications and is able to compromise with it. In
this paper we propose an approach that utilize hand-crafted
spatial features and an architecture that separates the static
pose classifier and a more complex dynamic gesture classifier
with late temporal fusion transformers with post-processing

for real-time mouse control.

II. METHODS
A. System Architecture

Figure 1 shows the system architecture of our proposed
HGR system for mouse control. MediaPipe Hands tracking
is utilized for detecting and tracking the user’s hand and
its landmarks in the video. A sliding window approach
is adopted where consecutive frames of hand gestures are
captured and the window updates with each new frame. The
hand landmarks are extracted and represented as a series of
skeleton frames which are input into a Static Pose MLP Clas-
sifier for frame-wise predictions. The handcrafted descriptors
module generates the descriptors such as limb angles and
joint velocities. We then determine the temporal dynamics of
the hand movements and predict gestures over the window of
frames. For post-processing, we apply fuzzy logic and gesture
activation rules to the output of the late fusion temporal
transformer. The mouse control is implemented using macros
that execute basic mouse functions based on recognized
gestures and poses.
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Fig. 1. System Architecture

Overall, the system processes video frame inputs to iden-
tify hand gestures and translate them into mouse control
functionalities using a strategic pipeline of two classifiers.
The Static Pose MLP Classifier allows the system to quickly
recognize static poses. The Dynamic Gestures Classifier uses
Late Fusion Temporal Transformers, which is tasked with
recognizing dynamic hand gestures by analyzing sequences
of hand movements over the window length. These dynamic
gestures involve intricate details of the hand and long,
complex motion patterns that unfold over multiple frames.
Temporal transformers excel in capturing these patterns as
they can model the temporal dependencies and variations in
the gesture sequence. Separating this task from the static pose
classifier allows the system to more accurately and reliably
recognize dynamic gestures that are mapped to computer
macros. By strategically separating the classifiers, the sys-
tem leverages the strengths of each approaches ensuring a
functional gesture-based mouse control system.

B. Static Pose MLP Classifier

The Static Pose Multilayer Perceptron (MLP) model
shown in Figure 2 classifies the static hand poses from
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Fig. 2. Static Pose MLP Model

skeletal data. The input consists of 21 key points, each with
an x- and y-coordinates giving a total of 42 features which
are then centered and normalized to remove variations due
to hand position in the frame and ensuring hand gestures
are on a comparable scale. The center of mass translation
involves adjusting the x- and y- coordinates so that the hand’s
centroid, is at the origin. Following translation, normalization
is applied to scale the data to a standard range, [-1, 1], using
mean and standard deviation normalization. This ensures
that the hand posture data is consistent regardless of hand
size. These preprocessing steps ensures the input to the
MLP are spatially invariant. This model is also designed to
be simple with a limited number of layers and inherently
ensures that the model is computationally efficient with very
few parameters and can execute with minimal delay during
inference.

C. Handcrafted Descriptors

In this implementation, we utilize handcrafted descriptors
as input to temporal transformers, capturing the essential
dynamics of hand gestures while ensuring computational
efficiency. The primary descriptors used are limb angles and
joint velocities, which provide a detailed representation of
hand movements.

1) Limb Angles: Given the position vectors of joints Pi
and Pj, the limb vector L;; is calculated as: L;; = P; — F;.
The angle 6 between two limb vectors L;; and Ly;can then
be calculated by.

L;; - Ly

cosf = ————
1L || Liga |

ey
This descriptor also utilizes the depth-estimated z-position
by MediaPipe to further enhance the recognition of dynamic
actions. It is designed to be spatially invariant and effectively
describes the spatial features of gestures with evolving limb
angles.

2) Joint Velocity: Joint velocity calculates the speed and
direction of joint movements from the given position vectors.
It is calculated by subtracting the position of the same joint
in the next frame (skipping the adjacent frame), effectively
capturing the direction of movement.

Given the position vectors P;(t) and P;(t+2At), the joint
velocity V; is calculated as:

- _ Pt +2At) — Bi(t)
Vi= 2At @

This descriptor is particularly useful for gestures that
involve translation in space as they progress within the
duration of the gesture.

Using these handcrafted descriptors, we ensure that our
system captures the essential features of hand gestures while
maintaining computational efficiency.

D. Dynamic Gesture Late Fusion Temporal Transformers
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Fig. 3. Late Fusion Temporal Transformer Model
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Figure 3 illustrates the Dynamic Gestures Classification
Model, consisting of N-cascaded Temporal Transformer En-
coder Blocks, followed by a global average pooling layer,
and a classification head. The input to this model includes
the handcrafted spatial descriptors discussed in the previous
section.

The temporal transformer encoder block captures the tem-
poral relationships between frames in a gesture sequence. It
starts with a positional encoder that encodes the order of
frames, allowing the block to process the entire sequence
in parallel. Multi-head attention is then applied to learn the
temporal dynamics of the handcrafted spatial descriptors,
enabling the model to focus on different parts of the sequence
simultaneously. To stabilize the training process and mitigate
issues like vanishing or exploding gradients, normalization
layers and skip connections are incorporated.

Following the transformer block, a Global Average Pooling
Layer aggregates the encoded temporal features, reducing
dimensionality by averaging each feature over the time
dimension. This process generates a compact representation
of the gesture sequence.

Lastly, the classification head, consisting of fully con-
nected layers, maps the pooled features to the gesture classes.
These layers effectively integrate the learned temporal and
spatial features to accurately predict the performed gesture.
By employing preprocessed descriptors as input and allowing
an end-to-end transformer network to work out the temporal
dynamics, the model ensures it learns the essential complex
features. The use of preprocessed descriptors also reduces
the required complexity of the transformer blocks, resulting
in fewer parameters. This makes the model more desirable
for real-time applications where low latency is essential.



E. Fuzzy Logic and Gesture Activation

Following the temporal transformers, the window predic-
tions are then stored in an action buffer which maintains a
queue of recent predictions for post-processing. Fuzzy logic
is then applied where the buffer is analyzed to identify the
most frequently occurring gesture class which is referred
to as the dominant class. After determining the dominant
class from the buffer, the logic checks the last two window
predictions to ensure that they match the dominant class. If
both conditions are met, the dominant class is returned as the
detected gesture. In essence, this post-processing technique
helps prevent misclassifications and ensures that transient
frames do not trigger incorrect gesture activations.

Furthermore, the post-processing logic includes a rising
edge activation mechanism for distinguishing between single-
time and continuous-time gestures. For single-time gestures,
the system looks for a transition from non-activation to acti-
vation or the rising edge of the dominant class. This ensures
that the gesture is only recognized once per occurrence. For
continuous-time gestures, the system allows sustained acti-
vation of the dominant class, enabling gestures that require
prolonged input to be correctly identified and processed.
Over-all the post-processing refines the gesture predictions
from the temporal transformers to improve accuracy through
dominant class detection in the action buffer, the fuzzy logic
helps minimize misclassification of incorrect gesture.

FE. Mouse Implementation

Once a gesture is successfully identified and activated after
post-processing, the system translates it into corresponding
mouse functionalities. This mapping process establishes how
specific gestures control the mouse cursor and interact with
the user interface. This approach allows for intuitive and
hands-free control of the mouse cursor. Noise filtering of
mouse cursor position is done to eliminate jittery cursor
movements.

III. RESULTS AND DISCUSSION
A. Metric Tests

For testing the Static Pose MLP Classifier, its performance
is assessed using the confusion matrix and accuracy metrics.
The best accuracy of 99.55% is achieved, his indicates that
the model is highly effective in recognizing static gestures.

For the temporal transformer, the input is converted into
fixed length sequences by concatenation and reshaping and
used a fixed-size sliding window. Gestures of the same class
are concatenated and reshaped sequences of fixed length
based on the average length of all the gestures. When the
fixed length exceeds the duration of the actual gesture, parts
of that gesture may be repeated which causes confusion
between actual repeated gestures and concatenated ones.
This is evident in both the CLICK1 and CLICK2 classes
which are the single and double left click mouse actions,
respectively. Figure 5 shows the confusion matrix of this
approach and an accuracy of 76.266% is achieved. This lower
accuracy can be attributed to potential gesture repetitions.
However, the approach is still essential and more suited for
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Fig. 4. Confusion Matrix for Temporal Transformer on the IPN Dataset
(Dynamic Length)

real-time applications to ensure more consistent and reliable
predictions. Overall, the achieved accuracy suggest that the
temporal transformer performs well on the dataset.
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Fig. 5. Confusion Matrix of the Temporal Transformer on the IPN Dataset
(Uniform Length)

It is also important to note that the dataset was also
modified by applying uniform length adjustment, concate-
nation, and normalization, which enhanced the compactness,
robustness, and real-time responsiveness of our architecture.
Figure 6 shows the confusion matrix of the final system
evaluated on the modified IPN hand dataset. The Levenshtein
accuracy of the system is 73.86% on the modified IPN
dataset. The Table summarize the precision, recall, and F1-
score of the final system.

The final system achieved a high overall accuracy of
85.86%, indicating good model performance. There is
some confusion in handling the gestures with misclassifica-
tions which are the 3_SWIPE_LEFT and 3_SWIPE_RIGHT
classes. The rest of the gestures are recognized and accurately
classified.

IV. CONCLUSION

In this paper, we proposed a vision-based real-time HGR
system for mouse control. The developed HGR system



TABLE 1
PRECISION, RECALL AND F1-SCORE ON THE MODIFIED DATASET

Class Precision | Recall | F1-Score
OPEN 1.0 1.0 1.0
CLOSE 1.0 1.0 1.0
CLICK1 1.0 0.97 0.98
CLICK2 0.82 1.0 0.9
3_SWIPE_LEFT 0.42 0.59 0.49
3_SWIPE_RIGHT 0.41 0.18 0.25
TWIRL_OK 1.0 0.9 0.94
TWIRL_OK_HOR 0.91 1.0 0.95
FINGER_HEART 0.96 0.93 0.94
THUMBS_UP_DIAG 1.0 1.0 1.0
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Fig. 6. Confusion Matrix of the Final System on the Modified Dataset

achieved high accuracy suitable for real-time classification of
both static poses and dynamic gestures with minimal delay.
The system is also robust against misclassifications within the
framework, thus enhancing reliability and can be extended
beyond mouse control to other command-mapping or inter-
action tasks across domains where non-contact interaction is
essential and cover many practical applications.

Using deep learning techniques, dataset modifications, and
post-processing techniques, the system achieved an overall
accuracy of 85.86%. The implementation of the static pose
MLP classifier with late fusion temporal transformers has en-
hanced the system’s performance for real-time applications.

For future work, we recommend extending the gesture-
based interaction beyond mouse control. The system’s mod-
ular architecture and lightweight components make it well-
suited for broader integration into general-purpose computer
interfaces, such as mapping gestures to keyboard macros,
system-level commands, or complex Ul interactions. These
enhancements could support richer, non-contact interaction
frameworks applicable in productivity, accessibility, and as-
sistive computing contexts.
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