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Abstract—Driver drowsiness is a common occurrence in road
accidents, affecting road safety. This study proposes a hybrid
multi-modal data fusion approach that combines facial video
features with electroencephalography (EEG) and electrocardio-
gram (ECG) signals to improve the accuracy and robustness of
drowsy driver detection. Using the DROZY dataset, our system
extracts spatio-temporal features from both video and physiolog-
ical data, then merges these features to improve accuracy. The
resulting dataset was used to train a model utilizing the random
forest algorithm (RF) as the classifier and principal component
analysis (PCA) with 95% explained variance for dimensionality
reduction. The results show that a higher performance was
achieved by combining video-based features and physiological
information from EEG and ECG; peaking at around 93%-
94% in all performance metrics with the multi-modal approach.
Moreover, the effect of varying window sizes (5s, 10s, 30s, 60s)
was also investigated, wherein the 30s window generally showed
the optimal performance results, while only being edged by the
10s window under the multi-modal scheme. To combat the loss of
temporal resolution in increasing window sizes, a sliding window
technique may be applied in future iterations of multi-modal DDD
research, finding a balance between resolution and computational
complexity trade-offs.

Index Terms—drowsiness detection, machine learning, physio-
logical signals, computer vision, multi-modal data fusion

I. INTRODUCTION

Road accidents share a large portion of deaths globally.
These incidents lead to fatalities, injuries, and infrastructural
damages. In the Philippines, road crash accidents increased by
35% from 2023 to 2024, majority due to reckless driving [1].
This increase in casualties necessitates the development of risk
prevention systems for driving, aside from policies.

One of the hazards connected to reckless driving is driver
drowsiness. Driver alertness is an essential element for road
safety, as fatigued drivers may suffer from impaired senses,
slow reaction time, and poor muscle coordination which
becomes a hazard [2]. To combat its occurrence, research
on driver drowsiness detection (DDD) systems have been
continuously conducted, providing timely warnings to drivers.
Some applications include intelligent driving systems that
take control of vehicles when drivers become drowsy; some
integrate comfort systems according to the DDD result [3]—[5].

Traditional approaches in DDD include the use of vision-
based and physiological signals data. The paper from [6]
presented a driver drowsiness estimation system using elec-
troencephalogram (EEG) signals through an encoder-decoder
network to determine the percentage of eyelid closure over
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pupil over time (PERCLOS). The model in their work used
the spectral features of decomposed EEG sub-bands across
eight channels. While the use of physiological signals for DDD
prove to be a viable approach, physiological workloads are
shown to have higher and more irregular values during real
driving conditions compared to simulated conditions [7]. As
such, it is still advisable to use other hybrid measures for DDD
to ensure reliability and robustness.

By the advances in computer vision, camera-based ap-
proaches have been gaining popularity for DDD. Compared
to the earlier approach, it is non-invasive and requires only a
camera Sensor.

Most vision-based approaches use a tracking algorithm to
track facial landmarks such as the eyes and mouth to measure
eye blinking, eye aspect ratio, facial expressions, yawning,
head pose, and gaze. Since these features are key indicators
of drowsiness, several studies utilizing these features show
great predictive performance [8]-[10]. However, similar to the
physiological signal-based approach, real driving conditions
are harsher than simulated driving conditions. Low lighting
conditions prove to be a challenge when using vision-based
approaches due to the difficulty in detecting facial landmarks.
Additionally, obstructions such as glasses can also impede the
detection of facial features.

This work proposes a multi-modal driver drowsiness detec-
tion framework that combines facial video features with EEG
and ECG signals. This study is further motivated by biosignal
acquisition systems such as BrainFlow and OpenBCI, which
have enabled gathering of physiological data using wearable
devices [11], [12]. This study aims to further explore the
multi-modal data fusion approach, incorporating CV, ECG,
and EEG signals in a machine learning framework for DDD.
Using the DROZY dataset, our system merges the spatio-
temporal features from both modalities to improve accuracy.
We apply a Random Forest to determine drowsiness levels and
explore how different time windows (5s, 10s, 30s, 60s) affect
detection performance. Inference efficiency and key features
were evaluated to ensure practical viability and interpretability.

II. METHODOLOGY

This section outlines the methodology adopted for hybrid
multi-modal DDD. The overall workflow is illustrated in
Figure 1, which involves data preprocessing using DROZY
dataset, feature engineering through extraction and fusion,



model training using a Random Forest classifier, and perfor-
mance evaluation.

A. Dataset Description

The ULg multi-modality Drowsiness Database or DROZY
was used in this study [13]. It consists of 14 different sub-
jects each subjected to three (3) successive tests where time-
synchronized video sensor data and polysomnography signals
(EEG, EOG, ECG, and EMG) were obtained. In this study,
we utilized the video sensor data, EEG signal, and ECG signal
to detect driver drowsiness. The videos have a dimension of
512x512 in 8-bit scale with 15/30 FPS while the PSG signals
contain 5-channel EEG and ECG sampled at 512 Hz. The
dataset used the Karolinska Sleepiness Scale (KSS) scores for
indicating drowsiness, but was dichotomized to a binary value
setting 1 as drowsy and 0 as non-drowsy following the scale of
[14] where KSS scores of less than or equal to six (6) were set
as non-drowsy while the remaining scores were set to drowsy.

B. Feature Engineering

The drowsy driver detection was treated as a spatio-temporal
problem, wherein spatial features such as facial landmarks in
a video were obtained and temporal changes in these facial
landmarks were recorded and observed. To facilitate the extrac-
tion of spatiotemporal features, each 10-min test, having video
and corresponding physiological data, was segmented into
nonoverlapping smaller temporal window chunks (5s, 10s, 30s,
and 60s). This chunking strategy allows for better localization
of features that allows for the detection of behavioral patterns
in both video (blinking, head pose, gaze) and physiological
(heart rate variability) data that may be undetectable in longer
time frames. Each chunk is treated as an independent data
point and will have the same class label as the 10-min test it
was extracted from.

1) Video-Based Features: Video-based features are obtained
by using a face detector to obtain facial landmarks. Most
video-based features rely on facial features, such as the eyes
and mouth, to identify drowsiness. This study focuses only
on the spatiotemporal changes in the subjects’ eyes [8], [15],
head orientation [16], and gaze [17]. The detailed explanation
regarding the video-based features were summarized in Table
L.

TABLE I
VIDEO-BASED FEATURES

Feature Description

Eye Aspect Ratio
Blinks
Blink Length
Closing Blink Velocity
Opening Blink Velocity
Fixed Gaze Short
Fixed Gaze Score

Distances among eye landmarks
Number of blinks over a window size
Width of peaks at half-prominence level
Closing speed during blinking.
Opening speed during blinking.
Determines still gaze
Determines gaze fixation

Pitch Up-and-Down orientation of the head.
Yaw Left-to-right orientation of the head.
Roll Side-to-side tilt of the face.

2) Physiological Features: The .edf files from the DROZY
dataset contain time-series ECG and EEG signals that were
recorded in drowsiness studies consisting of 14 test subjects,
each with 5 electrode channels. From there, features were

extracted in n-second epochs, where n = 5, 10, 30, and 60
seconds. Four main families of features are derived: Power
Spectral Density (PSD), Time-Domain, Nonlinear, and ECG-
based features. All features identified in the .edf files are
summarized in Table II.

TABLE 11
EEG AND ECG FEATURES

Feature Type Description
bpd PSD Band power in Delta band (0.5-4Hz)
bpt PSD Band power in Theta band (4-8Hz)
bpa PSD Band power in Alpha band (8-13Hz)
bpb PSD Band power in Beta band (13-30Hz)
bpg PSD Gamma Band Power (30-100Hz)
rba PSD Ratio of Alpha-to-Beta power
re PSD Relative energy in frequency band
mean, md, me Time Mean, Median, and Mean energy
sd, var Time Standard deviation and variance
skew, kurt Time Skewness and kurtosis
1d, nld Time First derivative, normalized form
2d, n2d Time Second derivative, normalized form
am Time Amplitude modulation
am Nonlinear Amplitude modulation
hm Nonlinear Hjorth Mobility
hc Nonlinear Hjorth Complexity
te, mte Nonlinear ~ Teager Energy, Mean Teager Energy
lrssv Nonlinear Log Root Sum Square Value
mcl Nonlinear Mean Curve Length
Heart rate ECG Beats per minute
PNN50 ECG Percent of RR intervals > 50 ms
RMSSD ECG RMS of Successive Differences
SDNN ECG Standard deviation of NN intervals
mean_RR ECG Mean of RR intervals
VLF_power ECG Power in Very Low Frequency Band

C. Model Training and Evaluation

The resulting dataset was used to train a model utilizing the
random forest algorithm (RF) as the classifier and principal
component analysis (PCA) with 95% explained variance for di-
mensionality reduction. Baseline models utilizing only video-
based features and physiological features were also created as
a benchmark to determine the effectiveness of utilizing multi-
modal data for drowsy driver detection. All models were sub-
jected to hyperparameter tuning using Bayesian optimization
using the hyperparmeters outlined in Table III. The model was
trained using K-fold cross validation with ' = 5 to ensure
better generalization against unseen data. The resulting models
were evaluated in terms of their accuracy, precision, recall, F1-
score, inference time, and memory consumption.

TABLE III
RANGE OF VALUES FOR HYPERPARAMETERS (RANDOM FOREST)

Values
Integer(10,100)

Hyperparameter

n_estimators

criterion [gini, entropy]
max_depth Integer(10,50)
min_samples_split Integer(2,20)
min_samples_leaf Integer(1,20)
max_features [sqrt, log2]

bootstrap [True, False]
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Fig. 1. Flowchart of the proposed hybrid multi-modal driver drowsiness detection system

III. RESULTS AND DISCUSSION

A. Exploratory Data Analysis

1) Video-Based: Figure 2 shows the 30-second EAR signal
and head pose estimate for subject 8 test 1 and test 3 which
is labeled as non-drowsy and drowsy, respectively. The figure
shows that non-drowsy drivers tend to have less number of
blinks, longer blink length, and higher PERCLOS. In terms of
head pose, non-drowsy drivers tend to maintain their head pose
over longer periods while drowsy drivers have more sudden
changes or spikes.
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Fig. 2. Eye Aspect Ratio and Head Pose Estimate over Time

Figure 3 compares the FGScore over time using the same
test subjects. Non-drowsy drivers have lower eye position
error indicating stable and accurate gaze tracking, whereas
drowsy drivers have shown several spikes in eye position error
likely corresponding to moments of eye closure or erratic
movement. Additionally, non-drowsy drivers tend to have an
increasing FGScore, indicating consistent eye movement and

alert attention, while drowsy drivers are more inconsistent
suggesting prolonged fixation.
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2) Physiological: Among the physiological data, the ECG
features contained heart rate information. The values for mean
R-R and heart rate features had a linear correlation, which
was expected as both were derived from the average distance
between R-peaks. The RMSSD and SDNN values also had a
linear relationship as both pertain to the variation of successive
R-peak timestamps.

Upon inspection of the ECG features, data that indicate a
higher heart rate and HRV tends to be classified as non-drowsy.
The mean R-R and heart rate features from Fig. 6 indicate
a higher HRV as shown by the large sharp transitions and
frequent value fluctuations.

Since there were 100+ EEG features, they cannot be fitted
into a single correlogram heatmap. However, features with
strong correlations (positively or negatively) with each other
were noted. EEG features that had a high correlation were the
spectral information, particularly the sub-band powers (alpha,
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beta, gamma, theta, and delta). This linear relationship was
also observed within the PSD features and across all EEG
channels. This may also imply that one channel is enough for
drowsiness prediction.
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Fig. 5. EEG sub-bands power features for drowsy and non-drowsy labeled
data points

As there was a high correlation of frequency band power
across EEG channels, the Fz channel was used for exploratory
data analysis. The power of the beta, alpha sub-bands for
drowsy labeled data points are flatter compared to their non-
drowsy counterparts. This corresponded to the description of
the EEG frequency bands as mentioned earlier: alpha and beta
are generally associated with alertness [18]. Gamma should
also diminish with drowsiness, reflecting the loss of high-level
cognitive activity, but the opposite is seen here.

The delta band also shows the opposite behavior: more
fluctuations in drowsy than in the non-drowsy data points.
Some non-drowsy participants have bursts in delta, but gen-
erally, delta activity is stronger in drowsy states. Delta waves
dramatically increase in sleep and fluctuations may indicate
transition to sleep [18].

B. Effect of Different Window Size

Table IV shows the performance comparison across different
models trained on purely video features, purely physiological
features, and multi-modal features with varying window size.
Both baseline models using only purely video-based features
and purely physiological features show an interesting trend,
wherein increasing the window size improves the performance
of the model only up to a certain point (up to 30s window size)
to which the performance drops significantly when increased
further. A similar trend was also observed when both fea-
tures were combined. However, more importantly, the findings
suggest that multi-modal models generally outperform models
utilizing only either video-based or physiological feature sets.

In general, longer temporal windows can provide more
information and improve the predictive accuracy of a model,
but only up to a certain window size. When using video-
based features, those obtained using short temporal windows
often perform poorly due to poor contextualization. ECG and
EEG signals, however, can have a small window size, as these
essentially repeat over a short period of time only. However,
as shown in the results, the 5s window size had worse
performance than the rest. This may be due to the susceptibility
of the feature extraction method to noise-corrupted data. ECG
data from test subject 2-1 was heavily corrupted by noise
such that the QRS complexes were not retrieved by the Pan-
Tompkins algorithm. This eventually led to more data points
in feature extraction when using smaller window sizes.

A previous study conducted by [19] observed similar find-
ings in which the area under the ROC curve for drowsiness
detection increases and saturates at a window size of 30s.
This suggests that as long as the temporal window is long
enough, the model will be able to obtain sufficient context
and classify correctly. However, it is still also important to
note that extremely large window sizes can still be detrimental
to the model. If the temporal window is too long, overgen-
eralization might occur leading to some drowsiness episodes
to be overlooked due to the averaging out some short-term
indicators of drowsiness [20], [21]. Therefore, a moderate
window size should be used in order to allow the model to
contextualize enough while still preventing the possibility of
an overgeneralization. This also ensures that the model is more
robust to any perturbations or quick-state transitions (a drowsy-
to-non-drowsy state in less than 60s) allowing the model to still
detect these fast-paced changes in the drivers state.

Furthermore, looking at drowsiness detection in a real-time
perspective also shows how vital it is to use the correct
window size. Using a longer window size would indicate a
longer time delay before drowsiness is detected, consequently
increasing the time it takes to alert the driver. In contrast, a
smaller window size allows for faster real-time detection of



TABLE IV
PERFORMANCE COMPARISON OF SPATIO-TEMPORAL FEATURES ACROSS DIFFERENT MODALITIES AND WINDOW SIZES.

Metric Video-Based Physiological Multi-modal
5s 10s 30s 60s 5s 10s 30s 60s 5s 10s 30s 60s
Accuracy || 0.8511 0.8657 0.8656 0.8148 || 0.8688 0.8889  0.8889  0.7870 || 0.9097 0.9398 0.9352  0.8981
Precision 0.8505 0.8660 0.8609 0.8228 || 0.8682 0.8887 0.8892  0.7855 0.9098 0.9400 0.9305 0.8902
Recall 0.8511 0.8657 0.8565 0.8148 || 0.8688 0.8889 0.8889 0.7870 || 0.9097 0.9398 0.9352 0.8981
F1-Score 0.8495 0.8640 0.8527 0.8071 0.8681 0.8881 0.8877 0.7827 0.9091 0.9395 09345 0.8968

drowsiness. Additionally, it might be better for future research
to explore an overlapping window approach rather than a non-
overlapping window approach to allow the system to handle
incremental updates for lower latency in detection.

C. Inference Time and Memory Consumption

Figure 6 shows how the inference time and training time
vary when using different types of features across different
window sizes. As the window size increases, the training time
decreases. This trend is expected since increasing the window
size reduces the amount of chunks extracted from each test
subjects. On the other hand, there is no visible trend as to how
inference time varies within different window sizes. However,
it can be observed that within the same window size, the
difference among the prediction time of models using purely
video-based features, purely physiological features, and multi-
modal features is negligible.
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Additionally, Figure 7 shows the model size and memory
consumption during inference for each model trained on differ-
ent feature sets across different window sizes. The model size
decreases as the window size is increased, particularly because
of the same reason why the training time decreases, because
of the decrease in number of chunks. On the other hand,
the memory consumption during inference remain consistent
within the same window sizes. This indicates that majority
of the memory consumption during inference is primarily
attributed to the features being stored rather than the actual
usage of the model. Furthermore, the results show that at

similar window sizes, there is a minimal difference between
the memory consumption of the baseline models compared to
the multi-modal model.
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D. Feature Importance

To ensure the explainability of the results, SHapley’s addi-
tive explanations was also used to determine the top features
contributing to the prediction of the model. For simplification,
we look only at the best performing window-size (30s). Figure
8 shows the top 20 SHAP values for the resulting multi-
modal model for detecting driver drowsiness. Results revealed
a mix of both video-based and physiological-based features
indicating the importance of using both modality in terms of
drowsy driver detection.

IV. CONCLUSION

This study presented an evaluation of video-based, physio-
logical, and multi-modal applications in drowsy driver detec-
tion. A higher performance was achieved by combining video-
based features and physiological information from ECG and
EEG; peaking at around 93%-94% in all performance metrics
with the multi-modal approach. Moreover, the effect of varying
window sizes was also investigated, wherein the 30s window
size generally showed the optimal performance results, while
only being edged by the 10s window under the multi-modal
scheme.

The performance of the physiological modality model
slightly increased as the window size went from 5 to 30s,
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then decreased at 60s. Increasing the window size allowed for
more temporal context to be included in the model, while larger
window sizes may have also led to over-averaging the values
from feature extraction, smoothing out the finer information
within the signals. To combat the loss of temporal resolution
in increasing window sizes, a sliding window technique may
be applied in future iterations of multi-modal DDD research;
although this can also lead to increase in computational
complexity.

Aside from performance, increasing the window size also
led to smaller model sizes and lower inference memory con-
sumption. Though this may be beneficial for edge computing,
the larger window size can imply having to wait longer for
enough input data before processing. This implies that a larger
window size can be detrimental in real-time applications such
as DDD, wherein immediate feedback is crucial.

While the multi-modal approach produced the best results,
the performance of using either solely a video-based or a solely
physiological modality is comparable to each other. This may
indicate that a similar accuracy performance can be achieved
by using either approach. Additionally, this can potentially be
a basis for deploying a data fusion-based robust DDD system
where one modality can be used in the event that the other
modality fails (i.e. using ECG and EEG if image-based data
is unavailable or anomalous, vice versa), in addition to just
combining all data sources.
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