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Abstract—Cloud presence in UAV imagery introduces ra-
diometric distortions that degrade visual quality and in-
terfere with downstream image analysis tasks. This paper
presents CPD, a lightweight image processing framework
for detecting cloud presence in UAV-acquired images. The
proposed method leverages a combination of dark channel
prior and local contrast measurement to generate a binary
haze map for image-level classification. Unlike deep learning-
based cloud detectors, CPD requires no training data and
performs inference in a fast, scalable manner. To further
improve runtime efficiency, we implement an optimized GPU-
enhanced version using convolution-based approximations of
morphological and statistical operators. Experimental results
on three datasets, including public satellite and haze datasets
as well as a UAV-based dataset, demonstrate the method’s
accuracy and runtime advantage. CPD achieves over 99%
detection accuracy with up to 5× runtime improvement on
mid-range consumer hardware, validating its applicability in
real-time UAV image processing pipelines.

Index Terms—cloud detection, UAV imagery, image pro-
cessing, GPU acceleration, dark channel prior, local contrast

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are increasingly used
for real-time monitoring and high-resolution image acqui-
sition in various fields such as agriculture, environmen-
tal surveillance, and disaster response [1]–[3]. However,
the presence of clouds in UAV images often introduces
radiometric distortion, obstructing ground visibility and
hindering the effectiveness of downstream computer vision
tasks [4], [5].

While deep learning approaches have shown promising
results in pixel-wise cloud segmentation tasks [6]–[8],
these methods typically require large annotated datasets
and computationally expensive training processes, which
limit their scalability in real-world UAV applications.
Moreover, UAV-acquired imagery has different character-
istics than satellite data—such as lower altitudes, higher
spatial detail, and variable cloud scales—necessitating
lightweight and adaptive detection methods [9], [10].

To address these challenges, this study presents a
threshold-based, image-level classification algorithm for
detecting cloud presence in UAV images using a combi-
nation of Dark Channel Prior (DCP) and Local Contrast
Measurement (LCM). The Dark Channel Prior, initially
proposed for haze removal [11], leverages the assumption
that non-sky outdoor regions typically exhibit low intensity
in at least one color channel. When applied to aerial
images, the DCP can effectively highlight hazy or cloud-
covered regions. Complementarily, local contrast serves as
a spatial statistical cue to differentiate low-contrast (cloud-
covered) from high-contrast (clear) regions [12].

Our proposed method first computes a binary haze
mask from the dark channel and another mask from the
local contrast standard deviation map. These are combined
to form a final haze confidence map. Based on the ra-
tio of haze-labeled pixels to total pixels, the image is
then classified as either Clouded or Non-Clouded. The
algorithm does not require training data, enabling fast
and scalable classification of large UAV image sets with
minimal computational resources.

This technique provides a practical alternative to
learning-based methods, particularly in low-resource or
real-time deployment scenarios. Compared to existing
satellite-oriented methods [13]–[15], our approach demon-
strates adaptability to the higher frequency noise and finer
textures typically present in UAV image data.

The key contributions of the proposed framework, CPD,
are summarized as follows:

• Lightweight image processing pipeline for cloud
detection: We propose a training-free framework that
combines dark channel prior analysis, local con-
trast measurement, and morphological operations to
classify UAV images as clouded or non-clouded.
This purely image processing-based approach en-
ables fast, scalable inference suitable for real-time
and resource-constrained scenarios. Furthermore, we
enhance the framework through GPU acceleration by
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Fig. 1. Proposed cloud presence detection framework for UAV images.

replacing CPU-bound operations with parallelizable,
GPU-compatible alternatives, significantly reducing
processing time without sacrificing detection accu-
racy.

• Dataset-level evaluation using ground truth labels:
To evaluate our method, we apply the CPD framework
to our UAV images, as well as to ground-based
and satellite-based images from publicly available
datasets, all of which exhibit haze or cloud-related
effects. Each image is classified individually, and pre-
dictions are compared to ground truth folder labels in-
dicating cloud presence. Accuracy is computed based
on the number of correctly identified clouded images
relative to the total in each labeled set, providing an
interpretable, folder-level evaluation without relying
on pixel-wise annotation. The evaluation metric is
defined as:

Accuracy =
Ncorrect

Ntotal
× 100% (1)

where Ncorrect is the number of correctly classified
clouded images, and Ntotal is the total number of
clouded images according to the ground truth.

The remainder of this paper is organized as follows:
Section 2 presents the materials and methods used in this
study, including details on geometric correction technique
and cloud removal algorithm. Section 3 discusses the
experimental results and comparative performance against
existing approaches. Finally, Section 4 concludes the study
with a summary of findings and potential directions for
future research.

II. MATERIALS AND METHODS

This study addresses the challenge of detecting cloud
presence in UAV-acquired images using a lightweight
and scalable image processing framework. The proposed
method integrates complementary visual cues—dark chan-
nel prior and local contrast statistics—to identify hazy
or cloud-covered regions in single-frame aerial imagery.
Preprocessing includes image resizing and grayscale con-
version, followed by the computation of haze indicators
through minimum channel intensity and local standard de-
viation analysis. Morphological operators are then applied
to refine the binary masks and suppress noise artifacts.

This combined strategy enables efficient image-level clas-
sification of cloud presence without reliance on training
data or deep models, as illustrated in Figure 1.

A. Dataset

To evaluate the effectiveness of the proposed CPD frame-
work, we used three datasets representing cloud and haze
conditions. The dataset introduced by Ancuti et al. (2019)
[16] includes densely hazy scenes that resemble cloud
presence and atmospheric scattering in natural environ-
ments. The second dataset, from Lin et al. (2019) [17],
consists of satellite images with varying degrees of cloud
coverage. Additionally, a UAV-based dataset containing
aerial image sequences was used to represent real-world
cloud presence conditions. These datasets were used to
test the CPD framework across different environmental
conditions and image types.

B. Cloud Detection Algorithm

The proposed CPD framework detects cloud presence
in UAV imagery using a combination of dark channel
prior and local contrast analysis. The method involves
preprocessing, haze detection via thresholding, mask com-
bination, and final image classification based on estimated
cloud coverage. The complete steps are summarized as
follows:

1) Image Preprocessing: All UAV images are resized to
512× 512 resolution for uniform processing. Each image
is converted to grayscale and smoothed using a Gaussian
filter to reduce noise and enhance spatial homogeneity
[18].

2) Dark Channel Prior Computation: The dark channel
prior (DCP) is calculated by taking the minimum intensity
across the RGB channels for each pixel:

D(x, y) = min
c∈{R,G,B}

Ic(x, y) (2)

To enhance dense haze or cloud-like areas, morphological
erosion is applied using a disk-shaped structuring element.
After erosion, a global threshold is applied to the resulting
dark channel image. In this work, we set the dark channel
threshold to TDCP = 30. Pixels with intensities below
this value are marked as potential cloud regions, forming
a binary haze mask [19].



3) Local Contrast Measurement: Local contrast is es-
timated by calculating the standard deviation of pixel
intensities within a fixed-size neighborhood window. This
measure highlights texture variation in the image. A pre-
defined contrast threshold of TLCM = 10 is used in this
study. Regions with contrast values below this threshold
are classified as low-contrast areas, which are commonly
associated with cloud presence. A binary mask is generated
to mark these regions accordingly.

4) Mask Combination: Inspired by the multi-feature
enhancement strategy proposed in Salazar-Colores et al.
[20], we combine the binary masks generated from the
dark channel prior and local contrast measurement. The
two binary masks MDCP and MLCM are combined using
logical AND to produce a final haze/cloud mask:

Mcloud(x, y) = MDCP (x, y) ·MLCM (x, y) (3)

5) Cloud Coverage Estimation and Classification: The
percentage of clouded pixels is computed as:

Cloud Coverage (%) =

∑
x,y Mcloud(x, y)(PixelCounts)

H ·W (HazeMaps)
×100

(4)
where H and W are the height and width of the image.
A cloud presence threshold of 97% is applied. If the
estimated cloud coverage exceeds this value, the image
is classified as Clouded; otherwise, it is labeled as Non-
Clouded.

6) Classification Output: Each image is saved to its
respective folder (Clouded or Non-Clouded) based on
the decision rule:

Class =

{
Clouded, if Cloud Coverage ≥ 97%

Non-Clouded, otherwise

III. EXPERIMENTAL RESULTS

To assess the performance of the proposed CPD frame-
work, we conducted experiments on three datasets con-
taining images with cloud or haze-related effects: the
Dense Haze dataset introduced by Ancuti et al. [16], the
RICE-1 satellite dataset from Lin et al. [17], and our
own UAV-based dataset. Each dataset includes images
labeled as having cloud presence, allowing for dataset-level
evaluation.

Figure 2 presents a comparative analysis between the
actual number of clouded images and the number detected
by our method. The CPD framework achieved 100%
detection accuracy on both the Dense Haze and UAV-
based datasets, and 99.8% accuracy on the RICE-1 dataset,
successfully identifying 499 out of 500 clouded satellite
images. These findings indicate that the CPD framework
may generalize well to diverse imaging conditions and
datasets.

To further evaluate the runtime efficiency of the pro-
posed method, we compared the performance of CPU-
based and GPU-based implementations across all datasets.
Table I presents the total processing time measured for
each dataset using a single-threaded CPU instance versus a
single GPU instance. The GPU-accelerated version consis-
tently outperformed the CPU implementation, particularly

for larger datasets, achieving over 2× speedup in the
case of the RICE-1 dataset. These results demonstrate the
scalability and runtime advantage of the CPD framework
when deployed on GPU-capable hardware.

Table II provides a technical breakdown of the func-
tional differences between the original CPU-based and
the optimized GPU-enhanced implementations of the CPD
framework. The CPU implementation utilizes sequential
operations such as imerode for dark channel estimation
and colfilt for local contrast computation, both of
which are not optimized for parallel execution.

In contrast, the GPU-enhanced implementation replaces
these operations with parallelizable alternatives that are
compatible with gpuArray, including convolution-based
approximations for both minimum filtering and local stan-
dard deviation via imfilter. Logical operations and
cloud coverage calculations are also performed on the
GPU, with only minimal data transfer to the CPU for final
output saving.

All experiments were conducted on a laptop equipped
with an Intel(R) Core(TM) i7-8750H CPU @ 2.20 GHz,
16 GB of RAM, and an NVIDIA GeForce GTX 1050 Ti
GPU (4 GB VRAM), running a 64-bit Windows operating
system. This setup reflects a mid-range, consumer-grade
hardware configuration, demonstrating that the proposed
GPU optimization achieves significant runtime improve-
ments without relying on high-end server-class hardware.

The implementation strategy effectively reduces CPU-
GPU memory transfer overhead, leverages the GPU’s
parallel processing capabilities, and achieves performance
gains of up to 5× while maintaining the original classifi-
cation logic and accuracy.

IV. CONCLUSION AND FUTURE WORK

This paper introduced CPD, a lightweight and training-free
framework for detecting cloud presence in UAV imagery
using dark channel prior and local contrast analysis. The
method operates entirely on image-level statistics and
binary masks, enabling fast classification without requiring
ground truth segmentation maps. We further demonstrated
the effectiveness of a GPU-enhanced implementation that
replaces CPU-bound operations with convolution-based
approximations for improved computational efficiency.

Experimental evaluation on three diverse datasets con-
firmed that CPD achieves near-perfect accuracy in identify-
ing clouded images while significantly reducing processing
time, particularly in GPU-supported environments. The use
of publicly available haze and satellite datasets, in addition
to a custom UAV dataset, also validated the method’s
generalizability across platforms.

In future work, the framework may be extended to
perform pixel-level cloud segmentation using rule-based
heuristics or lightweight learning models. CPD can also
be integrated as a preprocessing module in UAV image
stitching or object detection pipelines to improve the
performance of subsequent visual tasks.



Fig. 2. Comparison of actual and CPD-detected clouded image counts across three datasets. The proposed method achieves near-perfect classification
accuracy results.

TABLE I
RUNTIME COMPARISON BETWEEN CPU AND GPU IMPLEMENTATIONS

Dataset CPU-Based (Single Instance) GPU-Based (Single Instance)
Ancuti et al. (2019), original image size before downscaling:
1600×1200, 55 images

28.90 seconds 18.77 seconds

Lin et al. (2019), original image size before downscaling:
512×512, 500 images

183.22 seconds 83.61 seconds

Ours (UAV-based Dataset), original image size before downscal-
ing: 512×512, 91 images

20.52 seconds 4.08 seconds
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