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Abstract— Crop Yield Prediction or CYP is a crucial aspect 

of food security.  Being able to forecast shortages and excess in 

crop production can aid consumers in supply management as 

well as help the government in creating agricultural policies and 

implementing economic decisions that can help balance the 

supply chain. This study aims to build a crop yield prediction 

model using Neural Networks that is capable of handling high-

dimensional datasets with complex patterns. The model was 

trained using crop yield data from the province of Quezon for 

years 1987-2015, as well as the climatological data observed in 

the same province for the same period. The model was tested 

using the same data features that were observed for the years 

2016-2022. The forecast performance of the resulting model was 

benchmarked against two statistical forecasting techniques, 

namely the univariate Seasonal Autoregressive Integrated 

Moving Average and the multivariate Autoregressive 

Distributed Lag using the performance metrics Mean Absolute 

Error, Root Mean Squared Error, and Mean Absolute 

Percentage Error. The research findings indicate that the 

Neural Network-based CYP model performed best for both rice 

and corn yield forecasting with a MAPE of 3.84% and 4.46%, 

respectively.   

Keywords—neural networks, time series forecasting, 
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I. INTRODUCTION  

Time series forecasting has many applications across 

different industries. From predicting business sales, 

anticipating the spread of an epidemic, and conducting 

macroeconomy analytics, classical time series forecasting 

models such as Autoregressive Integrated Moving Average 

(ARIMA), Autoregressive Distributed Lag (ARDL), and 

Exponential Smoothing (ES) have been used extensively in 

the past decades. Not only are these models (ARIMA, ARDL, 

and ES) and their variants easy to interpret but they also 

perform well in applications where datasets have countable 

and few predictive variables. In fact, institutions commonly 

employ classical forecasting techniques to predict crop 

production volumes for rice and corn. These techniques are 

usually based on an autoregressive approach, which are 

generally good at handling low-dimensional time series data 

but tend to decline in performance when applied to extremely 

complex and nonstationary datasets. Thus, this study explores 

the use of Neural Networks to create a forecasting model that 

is theoretically more accurate compared to classical 

forecasting models. The researcher designed and 

implemented a Feedforward Neural Network (FNN) 

forecasting model that can outperform autoregressive models 

in terms of robustness and adaptability to growing 

complexities introduced by intricate meteorological 

conditions. Although this study focuses on the handling of 

meteorological variables, it can be noted that many physical 

phenomena like light, sound, and pressure do not always 

exhibit a simple linear relationship with their measured 

signal. This extends the applicability of Neural Networks and 

other machine learning techniques to fields like sensor 

networks and communication systems, where processing 

complex and nonlinear sensor or transceiver data is essential. 

II. REVIEW OF RELATED LITERATURE 

A. Sesonal AutoRegressive Integrated Moving Average 

(SARIMA) 

Autoregressive integrated moving average or ARIMA, is 

a statistical analysis approach that uses univariate data to 

better understand a time series and to predict future trends. A 

statistical model is autoregressive if up to a certain degree, it 

predicts future values based on past values or if there are 

temporal dependencies in the time series data. From 

predicting a stock's future price based on its past prices to 

trying to forecast a company's future earnings based on its 

earnings in the past periods, ARIMA has a wide range of 

applications [1]. SARIMA, a variant of ARIMA which was 

used in this study, introduces the seasonal component in the 

model hence the addition of another variable “S” in its name. 

The researcher opted to use SARIMA because of the 

observed and tested seasonality in the quarterly crop yield 

data after performing Kruskall-Wallis test. Shown below in 

Equation (1) is the general form of a SARIMA equation, 

where ϕp is the non-seasonal autoregressive component, θq is 

the non-seasonal moving average component, ΦP is the 

seasonal autoregressive component, ΘQ is the seasonal 

moving average component, εt is the offset at time t, and B is 

the backshift operator that produces the past timestep of the 

AR and MA polynomials. 

 

Φ𝑃(𝐵
𝑠)𝜙𝑝(𝐵)(1 − 𝐵)𝑑(1 − 𝐵𝑠)𝐷𝑌𝑡 = Θ𝑄(𝐵

𝑠)𝜃𝑞(𝐵)𝜀𝑡   (1) 

B. AutoRegressive Distributed Lag (ARDL) 

AutoRegressive Distributed Lag is another classical 
forecasting technique that is mainly used for analyzing long 
and short-term relationships between different time series 
variables. The AR component of the model captures pattern 
and temporal dependencies in the time series data while the 
DL component captures the relationship between independent 
variables Xt and the dependent variable Y while also 
considering the causality of the lag values of Xt to the present 
values of variable Y. Note that in the context of this study, the 
dependent variable Y is the forecasted crop yield while the 
independent variables Xt are the average rainfall, average 
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temperature, humidity, and cloud cover. The general goal of 
ARDL is to capture the lagged effects of the independent 
variables Xt to the dependent variable Y [2]. Shown below in 
Equation (2) is the general form of an ARDL equation. Yt 

denotes the dependent variable at time t, Xt denotes the 
independent variables at time t, αi are the coefficients of Y, βj 
are the coefficients of the current and lagged Xt, p is the 
number of lags for Y, and q is the number of lags for Xt. 

𝑌𝑡 = α + ∑ β𝑖𝑌𝑡−𝑖
𝑝
𝑖=1 + ∑ γ𝑗𝑋𝑡−𝑗

𝑞
𝑗=0 + ϵ𝑡          (2) 

C. Artificial Neural Networks (ANN) 

Artificial neural network (ANN) is a machine learning 

subset that is modeled after the connectivity and functionality 

of the neurons in the human brain. ANNs are typically 

comprised of a series of node layers namely the input layer, 

one or more hidden layers, and the output layer. Each node or 

neuron can be visualized as its own regression model 

composed of input data, weights, a bias (or threshold), and an 

output. These individual nodes connect to all the nodes in the 

adjacent layers. If the output of any individual node is above 

the specified threshold value, that node is activated, sending 

data to the next layer of the network, effectively simulating 

the flow of brain signals in the neurons of the human brain. 

      Arguably the simplest type of Artificial Neural Networks, 

a Feedforward Neural Network (FNN) or Multilayer 

Perceptron (MLP) allows the flow of information in the node 

layers in only one direction—forward. The input data gets 

accepted in the input layer and then the input layer passes it 

to the hidden layer/s using an activation function. Then, the 

last hidden layer passes the data to the output layer also 

through an activation function. These activation functions 

decide on the neurons that will be used in the flow of 

information in the network. The input layer has several input 

nodes that will be configured during the definition of the 

model. In crop yield prediction applications, these input 

nodes can correspond to the contributing factors to crop 

production e.g. meteorological data. 

D. Weather and Climate Effects on Crop Production 

From the period of land cultivation up until harvesting 

season, the production of agricultural crops is affected by 

biotic and abiotic factors. While biotic factors refer to crop 

diseases and pests, abiotic factors can further be classified 

into two categories: soil variables and meteorological 

variables. Soil variables consist of soil fertility, irrigation, ph 

level, and other less dominant factors. On the other hand, 

meteorological variables describe the amount of 

precipitation, amount of sunlight, temperature, and relative 

humidity that the crops experience and/or receive among 

others [2]. Like most agricultural crops, rice production is 

highly dependent on favorable climate. Extreme heat waves 

during El Niño season cause temperatures to go above 40 °C 

in Southeast Asian Countries. In such cases, farmers choose 

to delay the rice planting season to avoid losses as the heat 

stress caused by such temperature levels is generally too 

much for plants to handle. Heat stress causes water loss, 

delayed growth, and seedling death in plants—causing an 

overall reduction in crop yield [3]. Likewise, excessive 

rainfall and flooding can also reduce crop production in many 

ways. Plants that are submerged in water for too long will face 

extreme levels of imbalance in the exchange of atmospheric 

gasses that they need to survive. Furthermore, too much 

rainfall can cause saturation to the soil that, in effect, 

decreases the roots’ ability to absorb nutrients. In both cases, 

the survival rate of plants and hence total yield is reduced [4]. 

These cases of extreme changes in meteorological variables 

become harder to capture when creating a statistical 

forecasting model as residuals in the time series data gets 

more sophisticated and as the stationarity of the data gets 

affected by the changing seasons. 

III. METHODOLOGY 

The implementation of the project was divided into three 

phases: Data Preparation, Model Building, and Model 

Evaluation. The Data Preparation phase is comprised of steps 

that involved raw data gathering, data visualization and 

preprocessing, and dataset formatting and preparation. 

Secondly, the Model Building phase is where the FNN, 

ARIMA/SARIMA, and ARDL forecasting models were built, 

trained, and tested. Lastly, in the Model Evaluation phase, a 

comparative analysis of the derived models was done. The 

forecasting results of all three models were interpreted and 

assessed using the declared performance metrics to capture 

the optimal hyperparameter tuning for all the models. For 

both SARIMA and ARDL, the Akaike Information Criterion 

(AIC) of both models were also used as basis for determining 

the best model that was used for benchmarking.  

A. Data Preparation 

1) Data Gathering: Quarterly rice paddy and corn yield 

data from the province of Quezon for years 1987-2022 were 

obtained from the PSA openstat database. Quarterly 

meteorological data recorded in three PAG-ASA weather 

stations from the province of Quezon were obtained from 

DOST PAG-ASA CAD. The climatological observations that 

were used as meteorological data features for both the ARDL 

and FNN models are the quarterly average rainfall, 

temperature, relative humidity, and cloud cover for amount of 

sunlight. 

2) Dataset Formatting: After cleaning the raw data, 

datasets for respective models were prepared. For SARIMA 

forecasting model, the dataset used was a .csv file with 3 

columns and 145 rows. The first column holds the year label 

and the second column holds the quarter label. The third 

column holds the historical crop yield data. Tests for 

normality, seasonality, and presence of trend were done on 

the crop yield data, as well as time series transformation to 

allow for better data visualization. 

For the ARDL model, meteorological data were 

consolidated with the historical crop yield data into a single 

dataset. This resulted in a final dataset with 7 columns and 

145 rows. Time series transformation and test for stationarity 

were performed for all the data features used. All these 

transformations and tests for both SARIMA and ARDL were 

done using R software. 

      Similarly, the FNN dataset used the same format as the 

ARDL dataset but with additional columns. These additional 

columns are the previous quarter yield, previous two quarters 

yield, previous three quarters yield, and previous year yield. 

This is to maximize the ability of the neural network to detect 

temporal patterns and short-term to long-term dependencies 



in the dataset [5]. With said additional variables present in the 

FNN input layer, the researcher introduced a memory feature 

to the model that resulted in improvement in prediction 

accuracy. 

B. Model Building 

The researchers used various R packages and Python’s 

StatsModels library to visualize and better understand the 

dataset and identify stationarity, trends, short-term 

fluctuations, and seasonality in the time series crop yield data. 

Shown in Figure 1 is the time series decomposition of the 

historical rice yield. The observed plot depicts the actual 

observed historical yield while the plots for trend, seasonal, 

and random depict the actual trend, observed seasonality or 

cyclical behavior, and the significant fluctuations in the time 

series data. 

 

Since seasonality is present in the crop yield data, a 

SARIMA time series forecasting model was implemented 

instead of ARIMA. After performing the Wilk-Shapiro test 

and Augmented Dickey-Fuller test for stationarity, the PACF 

and ACF plots of the time series crop yield were inspected by 

the researcher to determine the AR and MA terms of the 

model, respectively. The resulting hyperparameter setting for 

the model is (0,0,0)(2,1,0)[4]. This setting was selected and 

implemented in the final SARIMA model because it gives the 

lowest AIC score, and it results in the best forecast 

performance in terms of the declared metrics. This optimal 

hyperparameter tuning was verified by using the auto.arima 

function under the forecast package in R. This will be further 

discussed in the Results and Discussion section. 

      For the ARDL model, the time series crop yield was set 

as the explained variable Y and meteorological variables 

namely the average rainfall, average temperature, relative 

humidity, and cloud cover were set as the explanatory 

variables X1, X2, X3, X4. Augmented Dickey-Fuller test was 

conducted for all the mentioned data features to ensure that 

all variables are stationary. Since all variables were tested to 

be stationary, there is no need to perform a cointegration test 

as it is only necessary when there are nonstationary variables. 

Different lag orders were investigated starting from lag order 

1 up to lag order 10, and the lag order that was used in the 

final model was 9 for both the explained variable Y and all the 

explanatory variables Xt. This is because lag order 9 gives the 

best AIC score, as well as it results to the best forecast 

performance in terms of the declared performance metrics. 

This optimal lag order was verified by using the lag order 

selection function VARselect for both the explained variable 

Y and explanatory variables Xt. The VARselect function 

under the vars library in R automatically determines the 

optimal lag length for time series data using the Akaike 

Information Criterion (AIC), Hannan-Quinn Information 

Criterion (HQ), Bayesian Information Criterion (BIC), and 

Final Prediction Error (FPE). This will be further discussed 

in the Results and Discussion section. 

The resulting equation for the ARDL model that was used 

in the study is shown below in Equation (3), where both the 

explanatory and explained variables Y and Xt are being lagged 

up to the order of 9. 

 

𝑌𝑡 = α0 + ∑ β𝑖𝑌𝑡−𝑖
9
𝑖=1 +∑ γ𝑗𝑋𝑡−𝑗

9
𝑗=1 + ε𝑡       (3) 

 

Using Python’s TensorFlow Keras environment, the 

researcher defined a sequential Neural Network with densely 

connected layers. The input layer was designed to have 12 

input nodes for crop yield, year, month, quarter, average 

rainfall, average temperature, relative humidity, cloud cover, 

same year last quarter yield, same year last two quarters yield, 

same year last three quarters yield, and same quarter previous 

year yield.  

      These input features were transformed using the 

MinMaxScaler function from the numpy library in order to 

normalize their values between 0 to 1. The number of hidden 

layers used was 3, with the rectified linear unit (relU) as its 

activation function and Adam as its optimizer. As for the 

output layer, a single output node was used to return yield 

predictions from the model. The hyperparameters of the final 

FNN model are described below: 

• Epochs: 1000 

• Batch size: 32 

• Learning rate α: adaptive 

• Hidden Layer Activation Function: relU 

• Output Layer Activation Function: linear 

• Optimizer: Adam 

• Loss Function: Mean Squared Error 

The final Feedforward Neural Network architecture that was 

implemented is shown below in Figure 2. 

Figure 2: Rice Yield Time Series Decomposition 

Figure 1: FNN Final Architecture 



C. Model Evaluation 

For all three models, a rounded-off data split of 81-19 for 

training and testing was implemented. 80.56% of total data 

corresponds to 28 years of training set while 19.44% of total 

data corresponds to 7 years of test set. The test set was used 

to evaluate the performance of all models using the 

performance metrics Mean Absolute Error (MAE), Mean 

Absolute Percentage Error (MAPE), and Root Mean Squared 

Error (RMSE).  

      For SARIMA, model diagnostics such as the mean zero t-

test, ArchTest for variance constant, Jarque-Bera test for 

normality of errors, and ACF-PACF inspection on model 

residuals were done to ensure model adequacy and to validate 

initial assumptions about trend, seasonality, and stationarity. 

For ARDL, an added Breusch-Godfrey serial correlation LM 

test was done to ensure adequacy of the ARDL model.  The 

Akaike Information Criterion (AIC) was used in model 

selection for both SARIMA and ARDL as it is a good 

measure of how well models fit the training data with the 

fewest possible parameter adjustments. The SARIMA and 

ARDL models with the best AIC-forecast error balance were 

chosen as the final models.  
      All three models were trained and tested using the rice 

yield data that was obtained from PSA. Then, all models were 
re-trained and re-tested using the corn yield data to compare 
forecast accuracy and to extend the scope of the study to corn 
yield forecasting. Additionally, the models were tested using 
varying test set sizes to capture changes in forecast accuracy 
with varying forecast horizon lengths. 

IV. RESULTS AND DISCUSSION 

A. SARIMA 

The resulting best model for SARIMA in terms of forecast 
error with MAE 2061.16 metric tons, MAPE 21.69%, and 
RMSE 2422.01 metric tons was achieved by the 
hyperparameter setting (p,d,q)(P,D,Q)[m] = (0,0,0)(2,1,0)[4]. 
With a forecast horizon of 7 years or 28 quarters (2016-2022), 
the superimposed plot of this forecast is shown below in 
Figure 3. 

After conducting model diagnostics, it has been shown 

that with α = 5%, the model failed to reject the Ho that the 

mean of the model residuals is zero. With Chi-squared value 

of 31.163 and α = 5%, the model is shown to have rejected 

the Ho that the variance of the residuals is constant. 

Furthermore, the Jarque-Bera test that was conducted shows 

normality of errors while the Ljung-Box test failed to reject 

the Ho that there is independence of errors in the model 

residuals. With all the diagnostics conducted showing model 

adequacy and low enough AIC score of 2158.725, the 

hyperparameter setting (0,0,0)(2,1,0)[4] was chosen as the 

final tuning for the SARIMA model. 

B. ARDL 

The resulting best model for ARDL in terms of forecast 

error with MAE 1762.37 metric tons, MAPE 14.56%, and 

RMSE 2309.85 metric tons was achieved by the 

hyperparameter setting (p,q) = (9,9). This corresponds to lag 

order = 9 for both the explained variable Y (crop yield) and 

the explanatory variables X1, X2, X3, and X4 (average 

rainfall, average temperature, relative humidity, and cloud 

cover). With the same forecast horizon as the SARIMA 

model, the superimposed plot of this forecast is shown 

below in Figure 4. 

Since the explanatory variables Xt are technically being 
regressed to the explained variable Y in ARDL forecasting, the 
Breusch-Godfrey serial correlation LM test was conducted 
together with the PACF inspection as part of the model 
diagnostics. The BG test showed an LM test statistic of 
0.16375 and a p-value of 0.85928, thus failing to reject the Ho 
that there is no serial correlation of up to lag 1 in the residuals 
of the ARDL model. This, coupled with the fact that there are 
no significant errors in the model residuals in its PACF plot 
and an AIC score of 2548.47, indicates that the assumptions 
about the data features are correct. This includes the 
assumption about stationarity of the explained variable Y and 
all the explanatory variables Xt, as well as the optimal lag 
order that was used in building the model. Moreover, model 
diagnostics p-value inspection shows that at α = 0.05, the only 
statistically significant variables in the chosen model are the 
crop yield lags 1, 4, 7, 8, 9; rainfall lags 1 and 8; temperature 
lag 1; relative humidity lag 7; and cloud cover lag 7. Because 
of this, reruns on the model at different lag orders with varying 
input features were done. 

C. Feedforward Neural Network (FNN) 

For FNN, the resulting best model in terms of forecast 

error with MAE 355.84 metric tons, MAPE 3.81%, and 

RMSE 605.49 metric tons was achieved at neural network 

setting of  epoch = 1000, batch size = 32, and adaptive 

learning rate α. By adjusting said hyperparameters and 

making them higher, the risk of overfitting the model also 

increases. This is the reason why the researcher opted to use 

the Neural Network setting described in the Methodology 

section as the final architecture for the FNN model. With the 

same forecast setting as the other two statistical models, 

shown below in Figure 5 is the plot of this FNN forecast 

superimposed with the test set. 

Figure 3: SARIMA Forecast Results 

Figure 4: ARDL Forecast Results 



 

D. Comparing the Forecast Results 

To benchmark the FNN model performance against the 

other two models, Table 1 below presents the rice paddy yield 

forecast accuracy of all three models in terms of MAE, 

MAPE, and RMSE.  

 
Table 1: Rice Paddy Yield Forecast Results 

 

Model Performance Metrics 

MAE 

(mt) 

MAPE 

(%) 

RMSE 

(mt) 

SARIMA 2061.16 21.69 2422.01 

ARDL 1762.37 14.56 2309.84665 

FNN 355.84 3.81 605.49 

 
      Now that testing and training were done for all models, 
results show that the FNN model is the most accurate in terms 
of forecast error. Careful inspection of the forecast plots for 
both the SARIMA and ARDL models reveals that forecast 
errors of both models often peak at quarters when crop yield 
is at either the annual minimum or maximum. This hints 
weakness in the models’ ability to capture extreme 
observations in the dataset. Meanwhile, the plot of the FNN 
model shows that forecast errors at quarters when the crop 
yield is at the minimum or maximum are significantly less, 
resulting in an overall better forecast accuracy. This aligns 
with the researcher’s hypothesis that machine learning models 
particularly Neural Network-based ones, are better at 
capturing abrupt and extreme changes in the time series data.   

      Another important aspect that was investigated by the 

researcher is the performance of all the models when 

forecasting with different test set sizes or essentially varying 

forecast horizon lengths. Shown below in Table 2 are the 

MAE and MAPE of the models with forecasting horizon 

lengths of 1 year up to the original test set size of 7 years. 

 
Table 2: Forecast Results for Varying Forecast Horizon 

Forecast 

Horizon 

(years) 

MAE (mt) and MAPE (%) 

SARIMA ARDL FNN 

1 625 5.5 2419 26.6 9011 84.2 

2 1962 16.1 2594 24.2 6504 75.8 

3 1921 16.3 2497 23.3 784 6.9 

4 1158. 14.7 2171 21.7 4958 38.4 

5 1134 15.9 2165 19.8 273 2.1 

6 1054 13.0 1961 17.2 591 4.9 

7 2061 21.7 1762 15.1 355 3.8 

 

The SARIMA model performed best when the forecast 

horizon length was set to 1 year. Meanwhile, the ARDL 

model performed second best in the same forecast horizon 

length and the FNN model performed worst. This result 

regarding the forecast accuracy of the SARIMA and FNN 

models contrasts with the result when the forecast horizon 

length was set to the original test set size of 7 years, as shown 

in Table 1. An insight that can be drawn from this is that 

univariate time series forecasting methods such as SARIMA 

may tend to perform better at short-term forecasting 

applications compared to multivariate forecasting techniques 

and neural network-based models. Also, an interesting 

observation that was made by the researcher is that there was 

a slight trend of improvement on the forecast accuracy of the 

ARDL model while there was a significant improvement on 

the forecast accuracy of the FNN model with increasing 

forecast horizons. This hints strength and superior robustness 

of both models when used in long-term forecasting 

applications. Refer to Figure 6 for a better illustration of this 

relationship. 

E. Extending the Models to Corn Yield Forecasting 

The final SARIMA, ARDL, and FNN models were used 

to forecast corn yield using the quarterly corn yield data that 

was obtained from the PSA Openstat database. Using the 

same train-test data split, the SARIMA model was trained 

with the time series corn yield data from the province of 

Quezon that spans from years 1987-2015.  It was then tested 

using the same forecast horizon that was used for rice yield 

forecasting and the resulting forecast errors are: MAE = 

5142.95 metric tons, MAPE = 38.07%, and RMSE = 6767.24 

metric tons.  

      Similarly, the same dataset was used to train and test the 

ARDL model with the only difference of using the time series 

corn yield data instead of rice paddy yield data as the crop 

yield variable. The resulting forecast errors are MAE = 

3864.268 metric tons, MAPE = 29.53%, and RMSE = 

5112.34 metric tons.  

      Lastly, the FNN model was trained and tested using 

almost the same dataset with the only difference of using the 

time series corn yield data instead of rice paddy yield data as 

crop yield variable. The resulting performance errors are 

MAE = 481.46 metric tons, MAPE = 4.46%, and RMSE = 

Figure 5: FNN Forecast Results 

Figure 6: Comparison at Varying Forecast Horizons 



481.46 metric tons. Shown below in Table 3 is the tabulated 

forecast results for the three models. 

 
 Table 3: Corn Yield Forecast Results 

Model Performance Metrics 

MAE 

(mt) 

MAPE 

(%) 

RMSE 

(mt) 

SARIMA 5142.95 38.07 6767.24 

ARDL 3864.27 29.53 5112.34 

FNN 481.46 4.46 614.468 

 

An observation that can be made is that the forecast 

performance of all three models has declined compared to 

their performance in rice yield forecasting. The SARIMA 

model has seen an about 16% increase in its forecast error, 

while the ARDL and FNN models have seen an increase of 

15% and 0.8%, respectively. The decline in SARIMA and 

ARDL performance is significant, and one possible reason for 

this is rice and corn have fundamentally different growth 

patterns, seasonality, and trends [6]. Because of this, the 

statistical models may have failed to capture the unique and 

more complex patterns in the corn yield data, and so the 

models have poorly predicted future yields. On the other 

hand, while a slight decline was seen in the performance of 

the FNN model, its MAPE is still significantly low and is still 

considered a good result in the context of crop yield 

prediction [7]. 

V. CONCLUSION 

 With the FNN model performing consistently best in both 
rice and corn yield forecasting, this reinforces the hypothesis 
of the researcher that a Neural Network-based forecasting 
model posits a solution to the decline in the accuracy of 
classical time series forecasting methods as datasets become 
more complex. Due to a multitude of contributing factors to 
crop production like economic shocks, global events, and 
extreme climatological conditions, accurate crop yield 
prediction becomes a much more nuanced process as these 
complexities manifest more in the dataset along with increased 
dimensionality. At the cost of model interpretability, Neural 
Network forecasting models can provide good insights into 
food supply shortages and food security in general. Thus, the 
researcher urges institutions such as the Philippine Statistics 
Authority and Department of Agriculture to consider 
employing machine learning techniques, particularly Neural 
Networks, to design novel crop yield prediction models. These 
models not only demonstrate superior robustness and 
adaptability to abrupt and extreme observations in datasets as 
shown in section IV.D but are also more straightforward to 
implement.   

 Moreover, the researcher reiterates that while the 

study focuses on the strengths of Neural Networks in dealing 

with nonlinear and complex data related to agricultural 

forecasting, the methods used in the study well extend to 

emerging technologies in communication such as adaptive 

signal processing and smart sensor networks. By 

demonstrating the effectiveness of a simple Feedforward 

Neural Network architecture in recognizing intricate data 

patterns in a dataset, it lays down the groundwork for 

exploring the applications of much simpler and easily 

trainable FNN models for processing real-time, noisy, and 

nonlinear sensor data that may or may not need adaptive 

filtering. 
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