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Abstract—Assessing the spatial clustering or scatter of points
in two-dimensional data is essential for applications across
scientific, engineering, and multimedia domains. Conventional
metrics, such as variance, convex hull area, and pairwise
distances, provide global measures of spatial dispersion but
may overlook local or radial structural nuances. This paper
introduces Concentric Cluster Analysis (CCA), a novel ap-
proach that segments data into concentric rings around the
centroid to quantify radial distribution patterns. The method-
ology is validated on both synthetic datasets and a real-world
shrimp feed tray image, representing practical aquaculture
monitoring. CCA generates interpretable sub-metrics from
both histogram-based and cumulative-based analyses, offering
granular insights into the degree and nature of clustering.
Comparative experiments show that CCA complements and
extends conventional spatial metrics, effectively distinguishing
between compact and dispersed point patterns and revealing
subtle features that may be masked by aggregate measures.
The results establish CCA as a valuable tool for spatial data
analysis, with demonstrated applicability to real-world multi-
media image analysis and potential for broader use in pattern
recognition, spatial clustering, and environmental monitoring.
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I. INTRODUCTION

Analyzing the spatial distribution of data points plays
a fundamental role in numerous fields, including spatial
ecology, geography, epidemiology, and data mining. Under-
standing whether points are clustered, uniformly distributed,
or randomly dispersed provides critical insights for decision-
making, resource allocation, and further exploratory analyses
[1], [2]. Various conventional metrics have been established
to quantify these spatial patterns, each capturing different
aspects of spatial structure and dispersion.

Classical methods such as variance and standard deviation
of distances from centroids, average pairwise distances,
and convex hull areas offer straightforward and intuitive
measures for evaluating spatial dispersion [2]-[4]. Addition-
ally, clustering-based techniques, including density-based
clustering (DBSCAN) [5], Silhouette analysis [6], Ripley’s
K-function [1], and K-means inertia [7], have been widely
adopted due to their capability to identify and quantify
clustering structures at varying scales. Despite their utility,
these methods often have limitations, such as sensitivity to
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parameter selection, computational complexity with large
datasets, and the necessity for prior assumptions about the
data structure.

To address these limitations and provide a complemen-
tary approach, we propose the Concentric Cluster Analysis
(CCA), an innovative spatial analytical method. CCA evalu-
ates spatial patterns by systematically segmenting the study
region into concentric rings around a centroid and exam-
ining the radial distribution of points. Unlike conventional
methods that typically provide global measures, CCA offers
detailed insights into the radial spatial structure, highlighting
nuances in point distributions that might be overlooked by
conventional global metrics.

This study demonstrates the utility and effectiveness of
CCA by comparing its performance against conventional
metrics using two synthetic datasets with distinct spatial
characteristics (Data A and Data B). Data A exemplifies a
tightly clustered pattern, while Data B represents a more
dispersed spatial configuration. The comparative analysis
highlights how CCA provides additional insights into spatial
distributions, complementing and enhancing conventional
methodologies.

The remainder of this paper is structured as follows.
Section II presents a detailed description of the Concentric
Cluster Analysis methodology, including its implementation
steps and sub-metrics. Section III provides a comparative
analysis between the proposed CCA approach and conven-
tional spatial metrics, supported by both synthetic and real-
world datasets. In particular, CCA is demonstrated using an
image of a shrimp feed tray from an aquaculture setting,
highlighting its practical application for multimedia image
analysis and feed monitoring. Finally, Section IV summa-
rizes the main findings and outlines directions for future
research.

II. THE CONCENTRIC CLUSTER ANALYSIS (CCA)

The Concentric Cluster Analysis (CCA) is proposed as
an innovative spatial analytical technique that evaluates the
distribution of points by their radial positioning relative to
a central centroid. This method systematically divides the
spatial region into concentric rings around the centroid,
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Fig. 1: Stepwise illustration of Concentric Cluster Analysis (CCA)
for two synthetic datasets. Top row: Each dataset with its centroid
and the largest enclosing circle. Bottom row: Division into 10
concentric rings centered at the centroid, showing the spatial
segmentation used for CCA metrics.
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Fig. 2: CCA based on histogram for Data A and B.

enabling a nuanced understanding of spatial dispersion and
clustering patterns beyond conventional global dispersion
metrics. CCA provides a detailed radial distribution profile,
complementing existing methods by explicitly focusing on
spatial density gradients.

A. CCA Methodology

The implementation of CCA proceeds through a few steps,
as illustrated in Fig. 1 with synthetic datasets Data A and
Data B demonstrating different spatial characteristics— Data
A exemplifies a tightly clustered spatial distribution, whereas
Data B illustrates a more dispersed spatial configuration.
These datasets are used throughout to illustrate the method-
ology.

First, the centroid of the point set is computed as the
mean of the coordinates. Next, the largest circle is drawn,
centered at the centroid, with a radius equal to the maximum
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Fig. 3: CCA based on cumulative distribution for Data A and B.
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Fig. 4: Ripley’s L-function for Data A and B

distance from the centroid to any point in the dataset. The
region is then subdivided into n concentric rings (in this
study, n = 10) by drawing circles at equally spaced radii
between zero and the maximum radius. Each point is as-
signed to a ring based on its distance from the centroid. This
stepwise process allows a visual and quantitative breakdown
of radial spatial structure, providing the foundation for the
subsequent histogram- and cumulative-based CCA metrics.
Fig. 1 demonstrates these steps for both a tightly clustered
(Data A) and a more scattered (Data B) synthetic dataset.

B. Histogram-based CCA

Histogram-based CCA quantifies spatial distribution by
counting points within predefined concentric rings around
the centroid. This approach provides discrete measurements
of radial density, allowing intuitive interpretation of spatial
patterns (Fig. 2).
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Fig. 5: Convex hull for Data A and B



TABLE I: Comparison of clustering/scatter metrics for Data
A (clustered) and Data B (scattered), including conventional
and CCA methods with corresponding plots.

Method / Metric Data A Data B Remarks
Variance 0.12 1.08 H1gher = more spread from
centroid
Std Dev 034 1.04 nghe? = more spread from
centroid
AYg Pairwise 0.98 3.07 Higher = more scatter
Distance
Convex Hull 7.24 22.41 Larger = more scatter
Area
Convex Hull Plot Fig. Sa Fig. 5b Visual envelope of data
DBSCAN 1 1 More clusters if data is denser and
Clusters less scattered
DBSCAN 0 10 More outliers = more scatter
Outliers
Silhouette Score 0.34 031 Lower = less clear clustering,
more scatter
Ripley’s . . Curve close to diagonal = even
L-function Fig. 4a Fig. 4b spread, high curve = cluster
K-means Inertia 17.89 18221  Higher = more spread from
centers
Histogram- . . CCA using points per concentric
based CCA Fig.2a  Fig.2b .0
Entropy L16 214 Higher = points more evenly
spread across rings
Welghled- 1.94 498 Higher = points farther from
AvgRing center on average
PeakRinglndex 1 5 Peak (?loser tol = clust_er near
center; higher = outer ring
Cumulative- 3 . CCA using cumulative distribution
based CCA Fig. 3a Fig. 3b across rings
SSE 171 0.10 Lower = distribution closer to
even (diagonal)
RMSE 0.41 0.10 Lower = closer to even
. Slope ~ 1: even, <I: clustered
BestFitSlope 0.47 1.16 center, > 1+ outer-heavy
KSDistance 0.68 0.16 Max difference from even; higher

= less even

Several histogram-based sub-metrics were introduced: en-
tropy, weighted average ring, and peak ring index. Entropy
measures the randomness or uniformity of points distributed
across the concentric rings, with higher entropy values
indicating more uniform radial distribution. The weighted
average ring metric computes the average radial distance
weighted by ring indices, reflecting the average spatial
dispersion of points. The peak ring index identifies the ring
containing the maximum number of points, indicating the
radial zone of greatest concentration.

C. Cumulative-based CCA

The cumulative-based CCA approach builds upon the
cumulative distribution of points across radial distances,
providing a continuous representation of radial dispersion.
It involves plotting the cumulative fraction of points as a
function of normalized radial distance from the centroid and
comparing this curve against an ideal uniform distribution
line (Fig. 3).

Several sub-metrics derived from cumulative-based anal-
ysis were considered. The sum of squared errors (SSE) and
root mean squared error (RMSE) quantify the deviation from
a perfect diagonal line representing uniform distribution,
with lower values indicating a distribution closer to uni-

formity. The best-fit slope provides an intuitive measure of
radial dispersion: a slope near unity indicates even radial
distribution, slopes less than one suggest central clustering,
and slopes greater than one suggest peripheral dispersion.
Furthermore, the Kolmogorov-Smirnov (KS) distance, a
widely-used metric in spatial statistics and hypothesis testing
[8], [9], measures the maximum absolute difference between
the empirical cumulative distribution and the theoretical uni-
form distribution, providing robust insights into the degree
of non-uniformity.

Both histogram-based and cumulative-based approaches
offer complementary perspectives. Histogram-based meth-
ods emphasize discrete radial concentrations, whereas
cumulative-based methods offer smoother and continuous
insights into spatial distribution patterns. Integrating both
approaches enhances the robustness and interpretability of
spatial distribution analyses, making CCA a valuable tool in
spatial data exploration and clustering studies.

III. COMPARATIVE DEMONSTRATION OF
CONVENTIONAL AND PROPOSED SPATIAL CLUSTERING
METRICS

Figure 1 shows two synthetic datasets, designated as Data
A and Data B, generated to illustrate varying degrees of spa-
tial dispersion. Data A consists of 50 points closely clustered
around a central centroid, exemplifying a dense and compact
spatial configuration. In contrast, Data B, comprising another
set of 50 points, displays a more dispersed pattern around a
similar centroid, indicating a higher degree of spatial scatter.

To quantify and compare the spatial characteristics of
these datasets, conventional spatial metrics were applied
(Table I). Metrics such as variance and standard deviation
from the centroid provided direct measures of point disper-
sion, where higher values clearly indicated greater scatter
[2]. Additionally, the average pairwise distance effectively
differentiated the datasets, confirming a significant increase
in scatter from Data A to Data B [3]. The convex hull area
further supported this observation, revealing a notably larger
envelope for Data B compared to Data A, highlighting its
dispersed nature (Fig. 5) [4]. Clustering methods including
DBSCAN [5] and K-means inertia [7] similarly distin-
guished the datasets, with DBSCAN identifying more out-
liers in the scattered dataset and K-means demonstrating sig-
nificantly higher inertia for Data B, reinforcing the observed
disparity. Ripley’s L-function (Fig. 4) provided insights into
clustering behavior across multiple spatial scales, clearly
showing Data A as clustered at smaller radii, whereas Data
B approached a more random distribution [1]. Additionally,
the Silhouette Score [6] indicated relatively clearer clustering
for Data A.

Building upon these conventional approaches, the pro-
posed Concentric Cluster Analysis (CCA) offered additional
nuanced insights into spatial structure by analyzing data
distribution across concentric rings around the centroid.
Two variants of CCA were employed: histogram-based and



TABLE II: Qualitative Comparison of Spatial Metrics for Measuring Data Scatter and Clustering

Method

Description

Pros

Cons

Variance or Standard
Deviation [2]

Quantifies spread by calculating variance or standard
deviation of point distances from the centroid.

Simple, quick, intuitive
measure of spread.

Sensitive to outliers, may
misrepresent true dispersion.

Average Pairwise
Distance [3]

Computes mean distance between every pair of
points to assess global dispersion.

Effectively captures
global scatter.

Computationally expensive for
large datasets.

Convex Hull Area [4]

Measures area enclosed by smallest convex polygon
covering all points; larger areas imply greater scatter.

Easy visual interpretation,
intuitive spatial metric.

Sensitive to peripheral points and
outliers.

DBSCAN [5]

Identifies clusters based on point density, separating
tightly packed points from outliers.

Clearly identifies clusters
and outliers.

Results depend heavily on
parameters (eps, min_samples).

Silhouette Score [6]

Quantifies how distinctly points belong to clusters,
ranging from -1 (poor) to +1 (excellent clustering).

Provides clear and widely
accepted clustering
quality measure.

Requires predefined cluster count
(k), limited effectiveness with
non-spherical clusters.

Ripley’s K-function [1]

Evaluates spatial clustering across multiple distance
scales, comparing observed distributions to random
distributions.

Multi-scale spatial
insights, detailed
clustering evaluation.

Complex interpretation, dependent
on spatial assumptions and edge
corrections.

K-means Inertia [7]

Calculates sum of squared distances of points to
nearest cluster centroids; lower inertia implies tighter
clustering.

Fast, simple
implementation, widely
utilized.

Strongly dependent on cluster
count selection, assumes spherical
clusters.

Concentric Cluster
Analysis (this method)

Assesses spatial dispersion by analyzing point
distributions within concentric rings around the
centroid.

Provides intuitive radial
distribution insights, easy
visual interpretation.

Sensitive to centroid positioning,
requires careful ring boundary
definition.

cumulative-based metrics. The histogram-based metrics (Fig.
2), including entropy, weighted average ring, and peak ring
index, directly highlighted radial distribution differences,
clearly delineating Data A as tightly clustered near the
centroid, and Data B as significantly more dispersed across
rings. Meanwhile, the cumulative-based CCA metrics (Fig.
3), such as sum squared error (SSE), root mean square error
(RMSE), best-fit slope, and Kolmogorov-Smirnov distance,
quantified how closely each dataset approximated a uniform
radial distribution. Data A notably deviated from uniformity,
reflecting its high central clustering, while Data B more
closely resembled an even or outer-heavy distribution, in-
dicative of its scattered nature.

IV. QUALITATIVE COMPARISON OF THE CONVENTIONAL
AND PROPOSED SPATIAL CLUSTERING METRICS

able II provides a comprehensive qualitative evaluation of
several established and newly proposed metrics for quanti-
fying the degree of clustering or scatter in two-dimensional
spatial data. Conventional metrics, such as variance, standard
deviation, average pairwise distance, and convex hull area,
are well-regarded for their simplicity and intuitive interpre-
tation. These approaches deliver rapid and global summaries
of spatial dispersion, making them appealing for initial
exploratory analysis or large-scale screening tasks. However,
their reliance on aggregate measures can sometimes mask
local or radial variations, especially in datasets containing
outliers or non-uniform spatial patterns. For example, the
convex hull area is sensitive to peripheral points, and average
pairwise distance may become computationally intensive as
dataset size increases.

Clustering-based methods, including DBSCAN, Silhou-
ette Score, Ripley’s K-function, and K-means inertia, further
enrich spatial analysis by enabling the identification and
quantification of cluster structures. DBSCAN effectively

detects dense regions and outliers but is notably sensitive to
parameter selection, while the Silhouette Score offers a clear
and widely accepted measure of clustering quality—albeit
with a reliance on a pre-specified number of clusters and
optimal performance on well-separated, spherical clusters.
Ripley’s K-function excels at revealing multi-scale clustering
but demands careful interpretation and can be affected by
edge effects and spatial assumptions. K-means inertia is
computationally efficient and widely used, yet its effec-
tiveness diminishes if clusters are non-spherical or poorly
separated.

In contrast, the Concentric Cluster Analysis (CCA)
method advances spatial characterization by explicitly seg-
menting data into concentric rings centered at the centroid
and analyzing the distribution of points within these seg-
ments. This radial approach affords a more nuanced view of
spatial organization, providing both visual and quantitative
insights into local clustering or dispersal patterns. CCA
is particularly advantageous when radial distribution is of
interest, as it can highlight structural features overlooked
by global or aggregate statistics. Nonetheless, CCA also
has limitations, including sensitivity to the placement of
the centroid and the definition of ring boundaries. Despite
these considerations, the complementary strengths of CCA
and conventional metrics suggest that combining both ap-
proaches can lead to more robust and interpretable spatial
data analyses.

V. DEMONSTRATION AND COMPARATIVE EVALUATION
ON A SHRIMP FEED TRAY IMAGE

The practical value of Concentric Cluster Analysis (CCA)
can be illustrated using a real-world image acquired from a
shrimp feed tray, which was manually actuated and lifted
above the water to monitor residual feeds. Fig. 6a presents
the original tray image with detected feed particles high-



(b) Masked feeds, centroid, CCA
rings, and tray border.

(a) Original image with detected
feeds and tray border.

Fig. 6: Spatial analysis of feeds in a shrimp tray.
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Fig. 7: CCA results for the shrimp tray image. Left: Histogram
of feed counts per ring. Right: Cumulative distribution of feeds
(orange) versus ideal uniform (brown dashed).

lighted in green and the tray border outlined in magenta. To
provide a clearer representation of spatial distribution, Fig.
6b displays only the masked feed positions, centroid (red),
concentric CCA rings (green), and tray boundary, omitting
the original background.

Spatial clustering and scatter were quantitatively assessed
using both the proposed CCA metrics and several con-
ventional spatial metrics. Table III summarizes the results,
including CCA sub-metrics and conventional measures such
as variance of radial distances, average pairwise distance,
convex hull area, and clustering indices.

The CCA histogram and cumulative distribution in Fig.
7 further reveal the spatial configuration of feeds within
the tray. The histogram (left) indicates a peak concentration
in rings 5 to 7, while the cumulative plot (right) shows a
moderate deviation from an ideal uniform distribution, with
a tendency for feeds to accumulate nearer the periphery than
the center.

Conventional spatial metrics yield complementary in-
sights. The variance of radial distances and average pairwise
distance confirm an overall dispersed pattern, while the
convex hull area quantifies the spread of the feed envelope.
The silhouette score and DBSCAN results suggest the feed
distribution forms a single main group, with minimal outlier
presence. K-means inertia, computed for £ = 2, further
indicates dispersion without clear subclusters.

This comparative analysis demonstrates that CCA pro-
vides interpretable, granular metrics of radial spatial struc-
ture, distinguishing subtle distributional features that may

TABLE III: Comparative spatial metrics for feed distribution
in the shrimp tray image.

Metric Value  Interpretation

Variance (radial) 13,571 Overall radial dispersion

Avg Pairwise Distance 450.0 Global feed scatter (pixels)

Convex Hull Area 328,545 SRreadQOf feed envelope
(pixels®)

Silhouette Score 029  Weak clustering (single
group)
One primary cluster

DBSCAN Clusters 1 (parameters: eps=30,
min_samples=4)

DBSCAN Outliers 7 Few spatial outliers detected

K-means Tnertia (k=2) 170,044 Dlsper_slon relative to cluster
centroids

Histogram-based CCA

Entropy 1.97 Moderate radial spread

Weighted Avg Ring 5.71 Fe_eds Conc<?ntrated m
mid-outer rings

Peak Ring Index 6 Highest density at ring 6

Cumulative-based CCA

SSE 0111 M(?derate deviation from
uniform

RMSE 0.105 Consistent with SSE

Best-fit Slope 1.19 Outer-heavy distribution

KS Distance 0.19 Some non-uniformity present

KS Distance (CCA) 0.19 Some non-uniformity present

be masked by aggregate or cluster-based measures. The
integration of both CCA and conventional metrics supports
a robust, multi-perspective assessment of feed dispersal
patterns relevant to aquaculture management.

VI. CONCLUSION

This study demonstrates the effectiveness of Concentric
Cluster Analysis (CCA) for quantifying and visualizing
the spatial distribution of feed particles in a real-world
shrimp tray image. By systematically applying CCA, both
histogram-based and cumulative-based metrics provided in-
terpretable insights into the radial arrangement of feeds,
revealing a tendency for particles to accumulate in the mid-
outer regions of the tray rather than at the center.

The comparative evaluation against conventional spatial
metrics, including variance, average pairwise distance, con-
vex hull area, and clustering indices, highlights the comple-
mentary strengths of CCA. While traditional metrics sum-
marize overall scatter and dispersion, CCA enables granular
characterization of spatial structure and clustering, which
are crucial for practical feed management and monitoring in
aquaculture systems.

These findings confirm that CCA is a valuable addition to
the toolkit for spatial pattern analysis, capable of uncovering
nuanced features in two-dimensional data that may not be
captured by global or cluster-based metrics alone. Integration
of CCA with standard approaches supports robust, multi-
perspective spatial assessments applicable not only in aqua-
culture but also in broader domains involving spatial pattern
recognition and monitoring.
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