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Abstract—Academic institutions and small-scale network
operators face limited access to 5G network testing and
development due to the restrictive and proprietary nature of
existing cellular systems. Open-source cellular stacks are already
available for software-based testing, but these platforms currently
lack capabilities in emulating realistic network conditions for
multiple-user scenarios. Hence, this project developed a multi-UE
emulator integrated with statistical channel models to allow UMa,
UMi, RMa, and indoor multi-user scenarios. A fully virtualized 5G
SA network is implemented within a single machine using Open5GS,
srsgNB, and srsUE from the srsRAN Project, with GNU Radio
Companion to allow multi-user connections. This stack is integrated
with 3GPP-compliant, python-based 5G channel models Sionna,
PySim5G, and PyWiCh, where their characteristics and behavior
under different topology scenarios are described using performance
metrics bitrate, SNR, error vector magnitude, and latency. This low-
cost and accessible alternative to proprietary testing environments
holds the potential to empower a wider range of distributors by
serving as a testbed to improve 5G network performance.

Index Terms—5G Stand Alone Network, Channel Emulator,
Sionna, PySim5G, PyWiCh

I. INTRODUCTION

The fifth generation of wireless technology (5G) is promising
faster speeds, lower latency, and expanded connectivity to support
emerging technologies in enhanced mobile broadband (eMBB),
massive machine-type communication (mMTC), and ultra-
reliable low-latency communication (URLLC). To support these
use cases, 5G must achieve stringent performance targets, such as
peak uplink data rates of up to 10 Gbps, ultra-low latencies as low
as 1 ms, and ability to handle high user equipment (UE) densities
[1]. However, achieving these targets is challenging due to the
complexity of wireless environments with fast-changing urban
channel conditions and increasing device mobility. Accurate mod-
eling of these environments is therefore critical for effective de-
sign, testing, and deployment of improvements in a 5G network.

Deployment strategies further shape the realization of 5G’s
full potential. Most networks currently operate in non-standalone
(NSA) mode, which integrates 5G radio access networks (RAN)
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with existing 4G core networks. While faster to deploy, NSA
lacks full 5G capabilities. Standalone (SA) deployments offer
these benefits but face significant rollout challenges, especially
in countries like the Philippines, where deployment is only
limited to select urban areas.

Existing open-source cellular stacks have enabled software-
based testing [2]–[4], but these fall short in emulating more
realistic multi-user network conditions. In this paper, we address
this gap by presenting a low-cost, configurable multi-UE
channel emulator that integrates standardized 3GPP channel
models into a fully-softwarized 5G SA network. Specifically,
the main contributions of this paper are as follows:

• Present the design of a fully-softwarized 5G SA network
in a single host using Open5GS and srsRAN, and support
10 UE connections via GNU Radio Companion.

• Emulate an uplink channel by integrating open-sourced,
Python-based 3GPP channel models Sionna, PySim5G,
and PyWiCh into the 5G SA platform.

• Assess and characterize the performance of each channel
model using bitrate and SNR at uplink, error vector
magnitude (EVM), and latency under the following
scenarios: urban macrocell (UMa), urban microcell (UMi),
rural macrocell (RMa), and indoor office.

This work is, to our knowledge, the first to incorporate
Sionna, PySim5G, and PyWiCh channel models into a virtual
5G SA architecture.

The rest of this paper is organized as follows: Section
II reviews related work on network and channel emulation.
Section III presents the emulator and simulation setup for
data collection. Section IV presents performance metrics,
comparison, and discussion of results. Lastly, the conclusion
and recommendations of the study are presented in Section V.

II. 5G EMULATION AND CHANNEL MODELS

Over the years, several 5G virtual cellular platforms have
emerged and been compared for their performance. For the
5G core, one study shows that OpenAirInterface (OAI) 5G CN
exhibits a significant increase in round-trip time (RTT) as the
number of UEs increases, unlike in Free5GC and Open5GS [5].
Free5GC also demonstrates better data plane performance, while
Open5GS outperforms in the control plane [6]. Additionally,
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Fig. 1: Block Diagram of the Channel Emulator

OAI 5G CN is reported to have the highest processing load,
while Open5GS has the lowest [5].

For the RAN, both srsRAN and OAI provide software radio
implementations of full 5G cellular stacks that comply with
the 3GPP standards; in contrast, UERANSIM offers only 5G
SA gNB and UE functions [3]. srsRAN is widely adopted due
to its open-source nature, ease of deployment, and modular
implementation on standard desktops, which contrasts with the
complexity of OAI [2], [4]. Studies have shown how srsRAN can
be implemented in a 5G SA testbed for SDRs [7] and commercial
mobile devices [8]. Based on these studies, Open5GS and srsRAN
are good software choices for the emulator. These softwares are
already tested to work together in multiple testbeds and setups.

Recent studies have tried expanding their testbeds for
multi-user connections. In [9], three COTS UE are connected
to a 5G SA indoor testbed and showed valuable insights on the
interoperability and performance of a 5G SA network. However,
this setup lacks scalability to replicate the variability of larger real-
world networks. Another study demonstrated a fully-softwarized
setup using srsUE with a simulated radio channel based on a
constant path loss only [10]. This setup fails to consider key
factors such as user mobility, interference, and environmental
obstructions, which are critical for emulating 5G networks.

Some emulators have integrated channel effects into 5G
cellular stacks. For example. OAI-based studies have incorporated
basic path loss model with AWGN only [11]. Simu5G has
also integrated channel modelling limited to UMa scenarios
and a Jakes fading model [12]. While other efforts focus on
channel emulation using dedicated hardware using FPGA [13].
Such designs however can only support a limited number of
specifications. In contrast, a fully softwarized setup enables
rapid development of new 5G features, such as scheduling
algorithms or resource allocation mechanisms, without costly
hardware and time-consuming over-the-air testbed prototypes.

While these approaches provide a baseline for channel emula-
tion, more sophisticated models are needed for high-fidelity 5G

research. Sionna enables link-level simulations using ray-tracing
[14]. PySim5G offers techno-economic modeling of 5G networks
by integrating engineering and cost factors with geospatial data
[15]. PyWiCh simulates wireless channels with spatial consis-
tency and scattering effects [16]. All three are Python-based and
3GPP-compliant, though each implements 3GPP guidelines differ-
ently, potentially yielding varied results. UMa and UMi scenarios
are common across all models, enabling reliable comparisons.
Additionally, Sionna and PySim5G support RMa scenarios, while
PyWiCh includes indoor office environments. Therefore, these
three models were selected for integration into the emulator.

III. METHODOLOGY

A. Machine Setup

Figure 1 illustrates the overall block diagram of the
developed multi-UE channel emulator. This was installed in
a workstation equipped with 32GB of DDR5 RAM, 4TB SSD,
8-core/16-thread processor, and NVIDIA RTX 4080 Super GPU,
operating in an Ubuntu 22.04.5 LTS. Its architecture consists
of a core, RAN, and UE using a dockerized Open5GS, srsgNB
from srsRAN Project and srsUE from srsRAN 4G, respectively.
This UE is only a prototype 5G UE module which limits the
subcarrier spacing to 15kHz and bandwidths of 5, 10, 15, or 20
MHz only. Among these, the study used the 10 MHz bandwidth
of the n3 band, having a carrier frequency of 1.8425 GHz
uplink and 1.7475 GHz downlink. These UEs were connected
via ZMQ sockets and separated via namespaces within the
workstation. To allow multiple UE connections, a broker such
as GNU Radio was utilized, with a sampling rate of 11.52 MHz.
A summary of the configurations used is shown in Table I.A.

B. Channel Model Integration

To emulate realistic channel conditions, Python-based channel
models, Sionna, PySim5G, and PyWiCh were integrated into
GNU Radio using embedded Python blocks. These models
implement 3GPP-based scenarios which include UMa, UMi,
RMa, and Indoor Office. Due to the limitations of srsUE, only
the uplink channel is modeled, and the downlink channel is ideal.
Specifically, srsUE is currently restricted to a three-tap filter
downlink channel in a single-UE scenario and disconnects in a
multi-UE scenario. This constraint is further discussed in Section
IV-D. For each channel model, the embedded Python block
applies the appropriate path-loss model and, for Sionna and
PyWiCh, convolves the generated channel coefficients to the radio
samples generated by the UE and gNB. For Sionna, these channel
coefficients are time-varying, with a coherence time of 200ms. A

TABLE I: gNB Configuration, and Topology Specifications

A. gNB Configuration
Band n3

UL Frequency 1.7475 GHz
DL Frequency 1.8425 GHz

Subcarrier Spacing 15 kHz
Bandwidth 10 MHz
Equalizer Zero Forcing
TX Gain 70
RX Gain 60

MCS Adaptive

B. Common Topology Specifications
Topology 1 Topology 2

Scenario UMa UMi - Street Canyon
Grid Size 500 m x 500 m 200 m x 200 m
BS Height 25 m 10 m
UE Height 1.5 m 1.5 m
UE State outdoors outdoors

UE Mobility static static
LOS/NLOS NLOS NLOS

C. Specific Topology Specifications
Topology 3 Topology 4

Channel Model Sionna PySim5G PyWiCh
Scenario RMa Indoor-Office
Grid Size 5 km x 5 km 120 m x 50 m
BS Height 35 m 3 m
UE Height 1.5 m 1 m
UE State outdoors indoors

UE Mobility static static
LOS/NLOS NLOS NLOS



(a) UMa (b) UMi (c) RMa (d) Indoor Office

Fig. 2: Aggregated Uplink Bitrate of 10 UEs for each Channel Model and Topology

(a) UMa (b) UMi (c) RMa (d) Indoor Office

Fig. 3: Average SNR across 10 UEs for each Channel Model and Topology

summary of shared topology configurations (e.g., grid size, BS
height, UE height) can be found in Table I.B, while topologies
specific to certain channel models can be found in Table I.C.

C. Experiment Setup

To test these channel models, the study simulated 10 UEs,
uniformly distributed across a rectangular grid with dimensions
determined by the scenario. While the gNB is fixed at the origin,
the 2D coordinates of each UE were generated using MATLAB.
Moreover, these positions remain constant for the same scenario
across different channel models. During testing, logs from the
gNB were processed into a CSV file to generate performance
metrics. These metrics include complementary cumulative
distribution function (CCDF) of bitrate and uplink SNR, error
vector magnitude (EVM), and user plane latency. The CCDF
and EVM metrics were derived from the gNB logs under a
400-second bidirectional iperf traffic session. Meanwhile, user
plane latency was computed using the average RTT generated by
100 pings in the uplink direction. These results were compared
to an ideal scenario wherein the gNB is directly connected to
the UE, removing any channel impairments in between.

IV. RESULTS AND DISCUSSION

A. Bitrate and SNR

The individual and aggregated uplink bitrate and SNR results
for UMa, UMi, RMa, and indoor office scenarios are shown
in CCDF curves in Figures 2 and 3. The CCDF of the uplink
bitrate and SNR provides insights regarding their statistical
properties such that it presents the probability of a random
variable being greater than the specified data point.

Figures 2 and 3 shows PyWiCh obtained the lowest valued
trend for the CCDF of average SNR and aggregated uplink bitrate
in common topology scenarios. These results are consistent
with PyWiCh’s application of spatial consistency for a more
realistic channel model given a densely populated environment
such as UMi and UMa. Similarly, Sionna consistently showed
low-valued trends for all applicable scenarios. Sionna’s library
for channel model capabilities provided a realistic physical layer
signal transmission which reflects a similar trend with PyWiCh.

As seen in Figures 2 and 3, PySim5G provides a closer-
to-ideal channel model with moderate disruption, showing
lower uplink bitrates and average SNR. In the RMA scenario,
increased distance leads to greater path loss thus more disruption
with SNR and uplink bitrate. The CCDF segment where
PySim5G outperforms the ideal in uplink bitrate is due to
initially high UE bitrates that drop upon congestion.

Overall, all channel models introduced in the uplink
transmission affected the bitrate and SNR metrics of each
UE and the network as a whole. PySim5G demonstrated
how even a simplified path loss implementation can influence
performance. Sionna and PyWiCh both showed significantly
degraded channel performance due to the addition of small-scale
fading, resulting in a more realistic and distorted channel model.
The differences in their performance characteristics highlight the
trade-offs between model complexity and accuracy in simulating
real-world wireless environments.

B. Error Vector Magnitude

Table II presents the average uplink EVM root-mean-square
(RMS) across all UEs for each channel model under different
scenarios. It can be observed that the EVM values for PySim5G



TABLE II: Average EVM of 10 UEs across different Channel
Models and Topologies

Channel Model
Scenario Sionna PySim5G PyWiCh

UMa 0.2419 0.036 0.2511
UMi 0.2194 0.036 0.1876
RMa 0.1670 0.034 -

Indoor Office - - 0.0677

are consistent at approximately 0.036, regardless of the scenario.
This arises from PySim5G’s path loss only model which does
not inherently increase noise power. Furthermore, the pathloss
it applies does not reduce the received signal below the noise
floor, meaning, it does not significantly affect the bit error rate
and EVM [17].

In contrast, both Sionna and PyWiCh include multipath
channel impulse responses in their channel models, which
introduce inter-symbol interference (ISI) and frequency selective
fading, resulting in higher EVM values. Additionally, srsgNB
implements a Zero Forcing (ZF) equalizer, which inverts the
channel to nullify its effects. However, this inversion can lead
to noise amplification, especially in the presence of spectral
nulls or deep fades, thus increasing the EVM [18].

Figures 4 and 5 show the EVM and Signal-to-Interference-plus-
Noise-Ratio (SINR) values for selected UEs in UMa and UMi.
For clarity, only 5 UEs exhibiting the highest EVM values are
shown. For both Sionna and PyWiCh, it can be seen that certain
UEs experience SINR values below the 0 dB line, indicating
the presence of interference caused by multipath fading.
Furthermore, EVM spikes can be noticed, which suggests that
the channel contains spectral nulls and deep fades. As shown in
Figures 4a and 4b, these spikes occur more frequently in Sionna,
which can be attributed to its time-varying nature, in contrast
to the time-invariant nature of PyWiCh for stationary UEs.

Although RMa has the highest path loss, it is insufficient to
reduce the received signal power below the noise floor. As such,
the dominant factor affecting the EVM is the (RMS) delay spread
of the channel. Since RMa models a less dense environment
compared to UMi and UMa, it has a lower delay spread [19]. This
leads to a more frequency-flat channel per subcarrier, reducing
the likelihood of spectral nulls, therefore decreasing the chance of
noise amplification due to the ZF equalizer. This is also consistent
with Indoor Office having an average EVM of only 0.0677. This
is expected as the UEs are very close to the gNB and the channel
is modeled as having the lowest (RMS) delay spread.

From the results gathered, it suggests that the main factor
affecting EVM across scenarios is the channel impulse response
(CIR) generated by the channel model. As discussed previously,
this is due to the ZF equalizer, which increases the noise floor
and introduces deviations from ideal symbol constellations.
Furthermore, the CIR introduces multi-path fading which results
in ISI, effectively lowering the SINR. Therefore, this suggests
that higher EVM values occur at denser scenarios such as UMa
and UMi due to higher delay spreads and severe interferences,
leading to a more distorted received signal.

(a) UMa

(b) UMi

Fig. 4: EVM and SINR Values for Selected UEs in Sionna

C. Latency

In the simulated topologies, the average distances of the
10 UEs are approximately 39.63 m (indoor), 64.98 m (UMi),
181.77 m (UMa), and 585.38 m (RMa). As shown in Figure 6
for an UMa scenario, the average RTTs per UE do not correlate
with distance. The same behavior is observed for all topologies.
Although greater separation suggests increased latency due to
longer propagation paths, the actual delay introduced is minimal.
A 100 m distance adds 333.6 ns only, which is negligible
compared to RTTs that span several hundred milliseconds.

But when aggregated, there appears some visible trends.
Figure 7 shows that the average RTT in a RMa scenario exhibits
around 80 ms more latency than UMa and UMi using Sionna. A
similar latency gap is also observed in PyWiCh when comparing
UMa/UMi to the indoor scenario. However, differences between
UMa and UMi are insignificant, reinforcing that propagation
delay alone does not account for the observed latency patterns.

In Pysim5G, latency remains largely consistent across
topologies. Its RTT values are also near that of an ideal setup.



(a) UMa

(b) UMi

Fig. 5: EVM and SINR Values for Selected UEs in PyWiCh

This is expected, as the model applies only path loss without
simulating multipath effects or time-varying channels, resulting
in minimal processing overhead.

Sionna consistently exhibits the highest latency primarily
due to its time-varying behavior, updating filter taps every 200
ms. This time variation introduces additional computational
overhead at receiver-side channel estimation. Moreover, repeated
filter tap generation and convolution-based signal processing
contribute further to the delay. These effects are observed
from the noticeably laggy updates in the receiver’s frequency
spectrum, in contrast to the smoother and more responsive
performance in PyWiCh and Pysim5G. In PyWiCh, filter taps
are generated only once at initialization, significantly reducing
runtime processing complexity and latency.

According to [20], RTT consists of several components,
including transmission processing latency, scheduling latency,
transmission delay, propagation latency, and reception processing
latency. With propagation delays being on the order of hundred
of nanoseconds to microsecond, even for UE distances up to
883.18 m, their effect on total latency is minimal as observed

Fig. 6: Average Latency per UE in an UMa Scenario

Fig. 7: Latency Averaged across 10 UEs for each Channel
Model and Topology

in RMa. Thus, the dominant factors influencing latency are
related to processing delays, both in signal processing within
GNU Radio and in receiver-side computations influenced by
the complexity of channel models.

D. Discussion

With the current setup, only the uplink channel is modeled
due to limitations of srsUE. As we’ve observed in single-UE
connections, the UE can handle only up to three filter taps without
releasing its RRC connection. While for multi-UE setups, asser-
tion failure in the RLC layer appears due to out-of-order segment
rearrangement. Looking at the source codes, it seems that channel
estimation capabilities of srsUE is only limited to three pilot taps
per resource block, compared to the gNB which is more adaptive.

Given the 3GPP compliance of all channel models, their
behaviors under different network conditions are varying. This is
due to the probabilistic calculation for small-scale parameters in
Sionna and PyWiCh. However, each channel model implemented
the same path loss computations provided by the 3GPP TR
38.901. Using this commonality, we compared the models
under UMa and UMi conditions to verify consistency at least
in the large scale parameters. The results showed that the path
loss values were largely consistent across all models, with
slight variations due to rounding values and the addition of a
log-normal distrubtion of PySim5G.

Based on the performance characteristics of each channel
model, users can configure the appropriate channel specifications
for network testing. PySim5G is suitable for implementing
distance and topology-dependent path loss models. When needing
the effects of small-scale fading, users can use PyWich for
non–time-varying channels and Sionna for time-varying channels.
Additionally, the scripts were developed for automated data



collection enabling users to characterize the channel conditions.
Hence, the characterization can be utilized for assessment when
the emulator is tested with third-party or additional algorithms.

V. CONCLUSION AND RECOMMENDATIONS

In this study, a fully softwarized multi-UE channel emulator
in a 5G SA network was developed using Open5GS and srsRAN
without any proprietary equipment. This study also integrated
three open-source implementations of 3GPP based channel
models with multiple topology scenarios, which can be used as
a tool for the actual deployment of 5G networks. The validation
of the channel model emulator can be concluded from the
network reliability assessments, such that the channel models
provide a source of realistic interference and distortion within
the 5G network. Moving on, the authors suggest exploring
the use of other UE simulators. Specifically, the developers
of srsRAN recommend using the Amarisoft UE. Although not
free, this software can be used for experiments that involve a
larger number of UE connections, non-ideal downlink channels,
non-terrestrial channel models, and more complex traffic patterns.

Finally, with these integrated channel models and scripts for
metric generation, the emulator presented could serve as a testbed
for 5G network optimization, open RAN deployments, and testing
of resource allocation algorithms for RAN intelligent controllers
(RIC). This emulator can also function as part of a backend
component for a larger network emulator or digital twins similar
to Colosseum. The provided characterizations and descriptions
for each channel model can be used by future users in selecting
and configuring the model that best fits their specific use case.
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